Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 363: 121389, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850923

ABSTRACT

Understanding the changes in the chemical compositions of dissolved trace elements from source to sink is important for determining their spatiotemporal variations and the contributions from each sub-catchment in the Ganges, Brahmaputra, and Meghna Rivers. To estimate weathering and matter transfer in these Rivers and the Ganges-Brahmaputra-Meghna (G-B-M) Estuary, we measured 15 dissolved trace element concentrations from surface and bottom water samples and exchangeable trace metals from suspended particulate matter (SPM). From December 2019 to January 2020, post-monsoon samples were collected from the upstream of the three rivers and the G-B-M Estuary. Dissolved trace elements in the Ganges and Meghna Rivers exhibited remarkable spatial variations, whereas those in the Brahmaputra River and the G-B-M Estuary were uniform. The dissolved trace elements, basic information (river length and drainage area), and physicochemical parameters (pH, dissolved oxygen, and conductivity) of the three rivers were inconsistent. The sample sites near urban areas and industrial centers had high concentrations of dissolved trace elements. In the G-B-M Estuary, iron and lead concentrations decreased along the salinity gradient, whereas selenium levels gradually increased, which may have been released by the SPM owing to its highly exchangeable trace metals. Compared with historical concentrations, trace elements that entered the G-B Estuary from the Ganges and Brahmaputra Rivers exhibited either decreased or increased metal fluxes due to additional terrigenous sources, suggesting that the inputs of trace element flux from the Ganges and Brahmaputra Rivers into the oceans may need to be re-evaluated. Furthermore, Fe and Pb concentrations and river fluxes in the Ganges and Changjiang have decreased in recent years. Hence, the fluxes of certain trace elements that enter the oceans from large rivers may require re-evaluation.


Subject(s)
Environmental Monitoring , Rivers , Trace Elements , Trace Elements/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Oceans and Seas
2.
Mar Pollut Bull ; 193: 115204, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37390626

ABSTRACT

We examined dissolved inorganic nitrogen (DIN) accumulation and attenuation in the lower stream and estuary of the Ganges-Brahmaputra-Meghna River system. In the lower stream of Ganges, Meghna and Brahmaputra rivers, nitrate (NO3-) was the dominant component in the DIN pool apart from the site near an industrial center. Concentrations of NO3- displayed minor differences between surface and bottom water, accounting for >90 % of the riverine DIN pool. Sources of NO3- were likely to be municipal wastewater and fertilizer based on signals of 15N-NO3- and 18O-NO3-. In the Meghna River, ammonium concentration in river water increased due to sewage discharge from local industrial centers. In the estuary, likely due to the high-abundance nitrifiers, nitrification rates overwhelmed removal rates and led to NO3- accumulation. Towards coastal ocean, DIN concentrations decreased due to seawater dilution and biological assimilation, indicating a tight linkage between the riverine input and ecological stability in the receiving water.


Subject(s)
Microbiota , Water Pollutants, Chemical , Rivers , Isotopes , Nitrates , Nitrogen , Water , Nitrogen Isotopes , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...