Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(7): 9137-9143, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38345830

ABSTRACT

In recent years, there has been significant interest in researching ultrafast nonlinear optical phenomena involving light-matter interactions in two-dimensional (2D) materials, owing to their potential applications in optics and photonics. MXene, a recently developed 2D material, has garnered considerable attention due to its graphene-like properties and highly tunable electronic/optical characteristics. Herein, we demonstrate ultrafast all-optical switches based on four-wave-mixing (FWM) utilizing the nonlinear optical property of MXene Ti3C2Tx. In order to realize the device, we deposited multilayered Ti3C2Tx in the form of a supernatant solution onto the polished surface of a side-polished optical fiber, enabling the interaction of Ti3C2Tx with the asymmetric evanescent field of the incident input. We systematically characterized the nonlinear optical responses derived from the Ti3C2Tx layers. The fabricated device exhibits notable performance metrics, an enhancement of the extinction ratio, and a conversion efficiency of the newly generated signal, displaying 5.3 and 5.2 dB, respectively. Additionally, the device operates at high modulation frequencies, reaching up to 20 GHz, and demonstrates high-resolution detuning with channel distances of up to 15 nm. Our findings highlight the potential of MXene-based materials for ultrafast optical data management systems.

2.
ACS Nano ; 15(12): 20300-20310, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34783245

ABSTRACT

Despite extensive efforts to explore femtosecond lasers functionalized by nonlinear graphene (Gf) that relies on the traditional transfer process, maximizing the efficiency, customizing the nonlinear interaction, and minimizing the optical loss remain critical challenges, especially in high-energy pulse generation. We demonstrate an ultrafast nonlinear all-fiber device based on conformal Gf directly synthesized in three dimensions on the surface of an in-fiber microstructure. A femtosecond laser-induced selective etching process is used to fabricate a customized microstructure that ensures the minimum but efficient laser-Gf interaction as well as possesses excellent surface conditions to suppress absorption and scattering loss. Conformal Gf is prepared by a spatial diffusion-based atomic carbon spraying process that enables nanocrystals to be synthesized homogeneously even onto the complex surface of the microstructure. The demonstration of high-energy pulses from the Gf saturable absorber highlights its simple, process-efficient, adjustable, and robust performance. The resultant hyperbolic secant pulses display individual pulse energy and peak power of up to 13.2 nJ and 20.17 kW, respectively.

3.
ACS Appl Mater Interfaces ; 12(48): 54005-54011, 2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33207879

ABSTRACT

Effective high-capacity data management necessitates the use of ultrafast fiber lasers with mode-locking-based femtosecond pulse generation. We suggest a simple but highly efficient structure of a graphene saturable absorber in the form of a graphene/poly(methyl methacrylate) (PMMA)/graphene capacitor and demonstrate the generation of ultrashort pulses by passive mode-locking in a fiber ring laser cavity, with simultaneous electrical switching (on/off) of the mode-locking operation. The voltage applied to the capacitor shifts the Fermi level of the graphene layers, thereby controlling their nonlinear light absorption, which is directly correlated with mode-locking. The flexible PMMA layer used for graphene transfer also acts as a dielectric layer to realize a very simple but effective capacitor structure. By employing the graphene capacitor on the polished surface of a D-shaped fiber, we demonstrate the switching of the mode-locking operation reversibly from the femtosecond pulse regime to a continuous wave regime of the ring laser with an extinction ratio of 70.4 dB.

4.
Sci Rep ; 7: 43371, 2017 02 27.
Article in English | MEDLINE | ID: mdl-28240276

ABSTRACT

The outstanding electronic and optical properties of black phosphorus (BP) in a two-dimensional (2D) but unique single-layer puckered structure have opened intense research interest ranging from fundamental physics to nanoscale applications covering the electronic and optical domains. The direct and controllable electronic bandgap facilitating wide range of tunable optical response coupled with high anisotropic in-plane properties made BP a promising nonlinear optical material for broadband optical applications. Here, we investigate ultrafast optical switching relying on the optical nonlinearity of BP. Wavelength conversion for modulated signals whose frequency reaches up to 20 GHz is realized by four-wave-mixing (FWM) with BP-deposited D-shaped fiber. In the successful demonstration of the FWM based wavelength conversion, performance parameter has been increased up to ~33% after employing BP in the device. It verifies that BP is able to perform efficient optical switching in the evanescent field interaction regime at very high speed. Our results might suggest that BP-based ultra-fast photonics devices could be potentially developed for broadband applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...