Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Inst Mech Eng H ; 218(5): 293-305, 2004.
Article in English | MEDLINE | ID: mdl-15532995

ABSTRACT

Finite-element method was employed to study the contact mechanics in metal-on-metal hip resurfacing prostheses, with particular reference to the effects of bone quality, the fixation condition between the acetabular cup and bone, and the clearance between the femoral head and the acetabular cup. Simple finite-element bone models were developed to simulate the contact between the articulating surfaces of the femoral head and the acetabular cup. The stresses within the bone structure were also studied. It was shown that a decrease in the clearance between the acetabular cup and femoral head had the largest effect on reducing the predicted contact-pressure distribution among all the factors considered in this study. It was found that as the clearance was reduced, the influence of the underlying materials, such as bone and cement, became increasingly important. Stress shielding was determined to occur in the bone tissue surrounding the hip resurfacing prosthesis considered in this study. However, the stress-shielding effects predicted were less than those observed in conventional total hip replacements. Both the effects of bone quality (reduction in elastic modulus) and the fixation condition between the cup and the bone were found to have a negligible effect on the predicted contact mechanics at the bearing surface. The loading was found to have a relatively small effect on the predicted maximum contact pressure at the bearing surface; this was attributed to an increase in contact area as the load was increased.


Subject(s)
Equipment Failure Analysis/methods , Hip Joint/physiopathology , Hip Joint/surgery , Hip Prosthesis , Models, Biological , Vitallium/chemistry , Computer Simulation , Elasticity , Finite Element Analysis , Fourier Analysis , Friction , Humans , Metals/chemistry , Prosthesis Design , Surface Properties
2.
J Biomech ; 36(4): 537-44, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12600344

ABSTRACT

The elastohydrodynamic lubrication analysis was carried out in this study for a typical metal-on-metal hip-resurfacing prosthesis under a simple steady-state rotation. Both the Reynolds equation and the elasticity equation were coupled and solved numerically by the finite difference method. The finite element method was used to determine the elastic deformation of both the femoral and the acetabular components required for the lubrication analysis. The effect of the radial clearance between the femoral head and the acetabular cup on the predicted film thickness and pressure distribution was investigated. The predicted minimum lubricating film thickness was found to compare favourably with the prediction using the Hamrock and Dowson [J. Lubrication Technol. 100 (1978) 236] formula based on the assumption of ball-on-plane semi-infinite solids. This implies that the non-metallic materials such as bone and cement underlying the metallic components have a small effect on the predicted lubrication performance for the particular metal-on-metal hip-resurfacing prosthesis considered in this study. Under realistic physiological walking conditions, a decrease in the radial clearance from 150 to 50 microm resulted in a 137% increase in the predicted minimum film thickness from 19 to 45 nm. Consequently, given a surface roughness of 0.01 microm for both the metallic femoral and acetabular bearing surfaces, the predicted mixed lubrication regime for the larger clearance was changed to a full fluid film lubrication regime for the smaller clearance. This clearly highlighted the importance of the design and manufacturing parameters on the tribological performance of these hard-on-hard hip prostheses.


Subject(s)
Hip Prosthesis , Materials Testing/methods , Models, Biological , Prosthesis Design/methods , Synovial Fluid/physiology , Algorithms , Chromium Alloys , Computer Simulation , Elasticity , Equipment Failure Analysis/methods , Finite Element Analysis , Hip Joint/physiopathology , Hip Joint/surgery , Humans , Lubrication , Metals , Pressure , Rheology/methods , Sensitivity and Specificity , Stress, Mechanical , Surface Properties , Walking/physiology , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...