Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rep Prog Phys ; 84(12)2021 12 07.
Article in English | MEDLINE | ID: mdl-34736231

ABSTRACT

A new paradigm for data-driven, model-agnostic new physics searches at colliders is emerging, and aims to leverage recent breakthroughs in anomaly detection and machine learning. In order to develop and benchmark new anomaly detection methods within this framework, it is essential to have standard datasets. To this end, we have created the LHC Olympics 2020, a community challenge accompanied by a set of simulated collider events. Participants in these Olympics have developed their methods using an R&D dataset and then tested them on black boxes: datasets with an unknown anomaly (or not). Methods made use of modern machine learning tools and were based on unsupervised learning (autoencoders, generative adversarial networks, normalizing flows), weakly supervised learning, and semi-supervised learning. This paper will review the LHC Olympics 2020 challenge, including an overview of the competition, a description of methods deployed in the competition, lessons learned from the experience, and implications for data analyses with future datasets as well as future colliders.


Subject(s)
Machine Learning , Supervised Machine Learning , Humans , Physical Phenomena , Physics
2.
Phys Rev E ; 103(4-1): 043307, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34005960

ABSTRACT

We present a method for unsupervised learning of equations of motion for objects in raw and optionally distorted unlabeled synthetic video (or, more generally, for discovering and modeling predictable features in time-series data). We first train an autoencoder that maps each video frame into a low-dimensional latent space where the laws of motion are as simple as possible, by minimizing a combination of nonlinearity, acceleration, and prediction error. Differential equations describing the motion are then discovered using Pareto-optimal symbolic regression. We find that our pre-regression ("pregression") step is able to rediscover Cartesian coordinates of unlabeled moving objects even when the video is distorted by a generalized lens. Using intuition from multidimensional knot theory, we find that the pregression step is facilitated by first adding extra latent space dimensions to avoid topological problems during training and then removing these extra dimensions via principal component analysis. An inertial frame is autodiscovered by minimizing the combined equation complexity for multiple experiments.

3.
Sci Adv ; 6(16): eaay2631, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32426452

ABSTRACT

A core challenge for both physics and artificial intelligence (AI) is symbolic regression: finding a symbolic expression that matches data from an unknown function. Although this problem is likely to be NP-hard in principle, functions of practical interest often exhibit symmetries, separability, compositionality, and other simplifying properties. In this spirit, we develop a recursive multidimensional symbolic regression algorithm that combines neural network fitting with a suite of physics-inspired techniques. We apply it to 100 equations from the Feynman Lectures on Physics, and it discovers all of them, while previous publicly available software cracks only 71; for a more difficult physics-based test set, we improve the state-of-the-art success rate from 15 to 90%.

SELECTION OF CITATIONS
SEARCH DETAIL
...