Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucl Med Biol ; 52: 63-69, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28648984

ABSTRACT

The endocannabinoid system participates in many processes in the body, including memory, reward, pain, motor activity, food intake, energy metabolism, and gastrointestinal functions. [18F]MK-9470 is a positron emission tomography (PET) ligand that binds with high affinity and selectivity to the cannabinoid type 1 receptor. In order to fully characterize ligand behavior, tracer uptake measured using in vivo microPET was compared with results from ex vivo tissue dissection. Twelve male Sprague-Dawley rats were divided into three subgroups and scanned over time periods of 10min, 30min and 90min using PET. Afterwards, a number of the animals' organs were dissected. Uptake of radioactivity was expressed in terms of %ID/ml and %ID/(g tissue). For comparison of in vivo and ex vivo methods, Bland-Altman plots were computed. The highest uptake of [18F]MK-9470 was found in the liver and small intestine; the brain showed less uptake, while low and unspecific binding was observed in tissue of the heart, lung, kidney and bone. In the brain, normalized uptake of [18F]MK-9470 was on average 0.25%ID/ml (range: 0.16 to 0.28%ID/ml). Bland-Altman plots revealed the best agreement between methods for the 90min acquisition protocols. High hepatic accumulation and metabolism of [18F]MK-9470 occur with mainly enteral excretion, which may vary considerably over time - a finding which may be of relevance in metabolite determination in quantitative brain studies. Comparisons between in vivo and ex vivo methods showed that whole-body distribution of [18F]MK-9470 using positron emission tomography is a preferable alternative to ex vivo biodistribution, and requires a significantly smaller number of animals.


Subject(s)
Pyridines/pharmacokinetics , Receptor, Cannabinoid, CB1/metabolism , Animals , Ligands , Male , Positron-Emission Tomography , Pyridines/metabolism , Rats , Rats, Sprague-Dawley , Tissue Distribution
2.
Neuropharmacology ; 117: 273-281, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28219717

ABSTRACT

Δ9-Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [18F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of < 1 ng/ml (injected dose: ≤ 0.01 mg/kg) corresponded to an increased glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies.


Subject(s)
Brain/drug effects , Brain/metabolism , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Glucose/metabolism , Psychotropic Drugs/pharmacology , Animals , Brain/diagnostic imaging , Brain Mapping , Cannabinoid Receptor Agonists/blood , Cannabinoid Receptor Agonists/pharmacokinetics , Chromatography, Liquid , Dose-Response Relationship, Drug , Dronabinol/blood , Dronabinol/pharmacokinetics , Fluorodeoxyglucose F18 , Male , Positron-Emission Tomography , Psychotropic Drugs/blood , Psychotropic Drugs/pharmacokinetics , Radiopharmaceuticals , Rats, Sprague-Dawley , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...