Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 5612, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154377

ABSTRACT

Current models propose that boundaries of mammalian topologically associating domains (TADs) arise from the ability of the CTCF protein to stop extrusion of chromatin loops by cohesin. While the orientation of CTCF motifs determines which pairs of CTCF sites preferentially stabilize loops, the molecular basis of this polarity remains unclear. By combining ChIP-seq and single molecule live imaging we report that CTCF positions cohesin, but does not control its overall binding dynamics on chromatin. Using an inducible complementation system, we find that CTCF mutants lacking the N-terminus cannot insulate TADs properly. Cohesin remains at CTCF sites in this mutant, albeit with reduced enrichment. Given the orientation of CTCF motifs presents the N-terminus towards cohesin as it translocates from the interior of TADs, these observations explain how the orientation of CTCF binding sites translates into genome folding patterns.


Subject(s)
CCCTC-Binding Factor/chemistry , CCCTC-Binding Factor/metabolism , Chromosomes, Mammalian/chemistry , Amino Acid Motifs , Animals , Binding Sites , CCCTC-Binding Factor/genetics , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Line , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , Cricetinae , Drosophila , Mice , Mutation , Nucleotide Motifs , Protein Binding , Structure-Activity Relationship , Cohesins
2.
Cell ; 169(5): 930-944.e22, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28525758

ABSTRACT

The molecular mechanisms underlying folding of mammalian chromosomes remain poorly understood. The transcription factor CTCF is a candidate regulator of chromosomal structure. Using the auxin-inducible degron system in mouse embryonic stem cells, we show that CTCF is absolutely and dose-dependently required for looping between CTCF target sites and insulation of topologically associating domains (TADs). Restoring CTCF reinstates proper architecture on altered chromosomes, indicating a powerful instructive function for CTCF in chromatin folding. CTCF remains essential for TAD organization in non-dividing cells. Surprisingly, active and inactive genome compartments remain properly segregated upon CTCF depletion, revealing that compartmentalization of mammalian chromosomes emerges independently of proper insulation of TADs. Furthermore, our data support that CTCF mediates transcriptional insulator function through enhancer blocking but not as a direct barrier to heterochromatin spreading. Beyond defining the functions of CTCF in chromosome folding, these results provide new fundamental insights into the rules governing mammalian genome organization.


Subject(s)
Chromosomes, Mammalian/chemistry , Animals , CCCTC-Binding Factor , Cell Cycle , Chromatin/metabolism , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , Embryonic Stem Cells/metabolism , Gene Expression Regulation , Indoleacetic Acids/pharmacology , Mice , Repressor Proteins/metabolism , Transcription, Genetic
3.
Development ; 143(5): 810-21, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26932671

ABSTRACT

KMT2D, which encodes a histone H3K4 methyltransferase, has been implicated in human congenital heart disease in the context of Kabuki syndrome. However, its role in heart development is not understood. Here, we demonstrate a requirement for KMT2D in cardiac precursors and cardiomyocytes during cardiogenesis in mice. Gene expression analysis revealed downregulation of ion transport and cell cycle genes, leading to altered calcium handling and cell cycle defects. We further determined that myocardial Kmt2d deletion led to decreased H3K4me1 and H3K4me2 at enhancers and promoters. Finally, we identified KMT2D-bound regions in cardiomyocytes, of which a subset was associated with decreased gene expression and decreased H3K4me2 in mutant hearts. This subset included genes related to ion transport, hypoxia-reoxygenation and cell cycle regulation, suggesting that KMT2D is important for these processes. Our findings indicate that KMT2D is essential for regulating cardiac gene expression during heart development primarily via H3K4 di-methylation.


Subject(s)
Gene Expression Regulation, Developmental , Heart/embryology , Histones/chemistry , Lysine/chemistry , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/physiology , Animals , Aorta/physiology , Cell Cycle , Echocardiography , Electrophysiology , Enhancer Elements, Genetic , Female , Gene Deletion , Gene Expression Profiling , Heart Ventricles/cytology , Histone-Lysine N-Methyltransferase , Hypoxia/metabolism , Methylation , Mice , Microscopy, Fluorescence , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Oxygen/chemistry , Promoter Regions, Genetic , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...