Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 51(14): 7972-7981, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28686425

ABSTRACT

The source-receptor relationship analysis of PAH deposition in Northeast Asia was investigated using an Eulerian regional-scale aerosol chemical transport model. Dry deposition (DD) of PAH was controlled by wind flow patterns, whereas wet deposition (WD) depended on precipitation in addition to wind flow patterns. The contribution of WD was approximately 50-90% of the total deposition, except during winter in Northern China (NCHN) and Eastern Russia (ERUS) because of the low amount of precipitation. The amount of PAH deposition showed clear seasonal variation and was high in winter and low in summer in downwind (South Korea, Japan) and oceanic-receptor regions. In the downwind region, the contributions from NCHN (WD 28-52%; DD 54-55%) and Central China (CCHN) (WD 43-65%; DD 33-38%) were large in winter, whereas self-contributions (WD 20-51%; DD 79-81%) were relatively high in summer. In the oceanic-receptor region, the deposition amount decreased with distance from the Asian continent. The amount of DD was strongly influenced by emissions from neighboring domains. The contributions of WD from NCHN (16-20%) and CCHN (28-35%) were large. The large contributions from China in summer to the downwind region were linked to vertical transport of PAHs over the Asian continent associated with convection.


Subject(s)
Air Pollutants , Environmental Monitoring , Asia , China , Japan , Republic of Korea , Russia , Seasons
2.
Environ Sci Technol ; 47(21): 12266-74, 2013.
Article in English | MEDLINE | ID: mdl-24053722

ABSTRACT

Using the GEOS-Chem atmosphere-land-ocean coupled mercury model, we studied the significances of two processes, soil emission and atmospheric oxidation-reduction, in the global biogeochemical cycling of mercury and their parametrization to improve model performance. Implementing an empirical equation for soil emission flux (Esoil) including soil mercury concentration, solar radiation, and surface air temperature as parameters enabled the model to reproduce the observed seasonal variations of Esoil, whereas the default setting, which uses only the former two parameters, failed. The modified setting of Esoil also increased the model-simulated atmospheric concentration in the summertime surface layer of the lower- and midlatitudes and improved the model reproducibility for the observations in Japan and U.S. in the same period. Implementing oxidation of atmospheric gaseous elemental mercury (Hg(0)) by ozone with an updated rate constant, as well as the oxidation by bromine atoms (Br) in the default setting, improved the model reproducibility for the dry deposition fluxes observed in Japan. This setting, however, failed to reproduce the observed seasonal variations of atmospheric concentrations in the Arctic sites due to the imbalance between oxidation and reduction, whereas the model with Br as the sole Hg(0) oxidant in the polar atmosphere could capture the variations.


Subject(s)
Atmosphere/chemistry , Mercury/analysis , Models, Theoretical , Soil/chemistry , Arctic Regions , Computer Simulation , Japan , Oxidation-Reduction , Reproducibility of Results , Seasons , Soil Pollutants/analysis , United States
3.
Environ Pollut ; 182: 324-34, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23973884

ABSTRACT

We analyzed the source-receptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40 °N, 40-60%) and central China (30-40 °N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Air Pollution/statistics & numerical data , Asia , Models, Chemical , Particulate Matter/analysis
4.
Environ Sci Pollut Res Int ; 19(9): 4073-89, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22869502

ABSTRACT

In response to increasing trends in sulfur deposition in Northeast Asia, three countries in the region (China, Japan, and Korea) agreed to devise abatement strategies. The concepts of critical loads and source-receptor (S-R) relationships provide guidance for formulating such strategies. Based on the Long-range Transboundary Air Pollutants in Northeast Asia (LTP) project, this study analyzes sulfur deposition data in order to optimize acidic loads over the three countries. The three groups involved in this study carried out a full year (2002) of sulfur deposition modeling over the geographic region spanning the three countries, using three air quality models: MM5-CMAQ, MM5-RAQM, and RAMS-CADM, employed by Chinese, Japanese, and Korean modeling groups, respectively. Each model employed its own meteorological numerical model and model parameters. Only the emission rates for SO(2) and NO(x) obtained from the LTP project were the common parameter used in the three models. Three models revealed some bias from dry to wet deposition, particularly the latter because of the bias in annual precipitation. This finding points to the need for further sensitivity tests of the wet removal rates in association with underlying cloud-precipitation physics and parameterizations. Despite this bias, the annual total (dry plus wet) sulfur deposition predicted by the models were surprisingly very similar. The ensemble average annual total deposition was 7,203.6 ± 370 kt S with a minimal mean fractional error (MFE) of 8.95 ± 5.24 % and a pattern correlation (PC) of 0.89-0.93 between the models. This exercise revealed that despite rather poor error scores in comparison with observations, these consistent total deposition values across the three models, based on LTP group's input data assumptions, suggest a plausible S-R relationship that can be applied to the next task of designing cost-effective emission abatement strategies.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Models, Chemical , Sulfur/analysis , Air Pollution/prevention & control , China , Japan , Republic of Korea , Weather
5.
Environ Sci Technol ; 46(9): 4941-9, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22435795

ABSTRACT

The emission, concentration levels, and transboundary transport of particulate polycyclic aromatic hydrocarbons (PAHs) in Northeast Asia were investigated using particulate PAH measurements, the newly developed emission inventory (Regional Emission inventory in ASia for Persistent Organic Pollutants version, REAS-POP), and the chemical transport model (Regional Air Quality Model ver2 for POPs version, RAQM2-POP). The simulated concentrations of the nine particulate PAHs agreed well with the measured concentrations, and the results firmly established the efficacy of REAS/RAQM2-POP. It was found that the PAH concentrations in Beijing (China, source region), which were emitted predominantly from domestic coal, domestic biofuel, and other transformations of coal (including coke production), were approximately 2 orders of magnitude greater than those monitored at Noto (Japan, leeward region). In Noto, the PAH concentrations showed seasonal variations; the PAH concentrations were high from winter to spring due to contributions from domestic coal, domestic biofuel, and other transformations of coal, and low in summer. In summer, these contribution were decrease, instead, other sources, such as the on-road mobile source, were relatively increased compared with those in winter. These seasonal variations were due to seasonal variations in emissions from China, as well as transboundary transport across the Asian continent associated with meteorological conditions.


Subject(s)
Air Pollution/analysis , Atmosphere/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Computer Simulation , Asia, Eastern , Models, Theoretical , Seasons , Uncertainty
6.
Environ Sci Technol ; 36(22): 4707-13, 2002 Nov 15.
Article in English | MEDLINE | ID: mdl-12487289

ABSTRACT

In the early 1990s, it was projected that annual SO2 emissions in Asia might grow to 80-110 Tg yr(-1) by 2020. Based on new high-resolution estimates from 1975 to 2000, we calculate that SO2 emissions in Asia might grow only to 40-45 Tg yr(-1) by 2020. The main reason for this lower estimate is a decline of SO2 emissions from 1995 to 2000 in China, which emits about two-thirds of Asian SO2. The decline was due to a reduction in industrial coal use, a slowdown of the Chinese economy, and the closure of small and inefficient plants, among other reasons. One effect of the reduction in SO2 emissions in China has been a reduction in acid deposition not only in China but also in Japan. Reductions should also improve visibility and reduce health problems. SO2 emission reductions may increase global warming, but this warming effect could be partially offset by reductions in the emissions of black carbon. How SO2 emissions in the region change in the coming decades will depend on many competing factors (economic growth, pollution control laws, etc.). However a continuation of current trends would result in sulfur emissions lower than any IPCC forecasts.


Subject(s)
Acid Rain , Air Pollutants/analysis , Greenhouse Effect , Sulfur Dioxide/analysis , Asia , Coal , Commerce , Environmental Monitoring , Incineration , Industry , Power Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...