Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 147(21): 214901, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29221412

ABSTRACT

We show that the average size of self-avoiding polygons (SAPs) with a fixed knot is much larger than that of no topological constraint if the excluded volume is small and the number of segments is large. We call it topological swelling. We argue an "enhancement" of the scaling exponent for random polygons with a fixed knot. We study them systematically through SAP consisting of hard cylindrical segments with various different values of the radius of segments. Here we mean by the average size the mean-square radius of gyration. Furthermore, we show numerically that the topological balance length of a composite knot is given by the sum of those of all constituent prime knots. Here we define the topological balance length of a knot by such a number of segments that topological entropic repulsions are balanced with the knot complexity in the average size. The additivity suggests the local knot picture.

2.
J Chem Phys ; 147(9): 094901, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886644

ABSTRACT

We define the knotting probability of a knot K by the probability for a random polygon or self-avoiding polygon (SAP) of N segments having the knot type K. We show fundamental and generic properties of the knotting probability particularly its dependence on the excluded volume. We investigate them for the SAP consisting of hard cylindrical segments of unit length and radius rex. For various prime and composite knots, we numerically show that a compact formula describes the knotting probabilities for the cylindrical SAP as a function of segment number N and radius rex. It connects the small-N to the large-N behavior and even to lattice knots in the case of large values of radius. As the excluded volume increases, the maximum of the knotting probability decreases for prime knots except for the trefoil knot. If it is large, the trefoil knot and its descendants are dominant among the nontrivial knots in the SAP. From the factorization property of the knotting probability, we derive a sum rule among the estimates of a fitting parameter for all prime knots, which suggests the local knot picture and the dominance of the trefoil knot in the case of large excluded volumes. Here we remark that the cylindrical SAP gives a model of circular DNA which is negatively charged and semiflexible, where radius rex corresponds to the screening length.


Subject(s)
DNA, Circular/chemistry , Models, Chemical , Computer Simulation , Nucleic Acid Conformation , Thermodynamics
3.
Polymers (Basel) ; 9(7)2017 Jun 28.
Article in English | MEDLINE | ID: mdl-30970929

ABSTRACT

We review recent theoretical studies on the statistical and dynamical properties of polymers with nontrivial structures in chemical connectivity and those of polymers with a nontrivial topology, such as knotted ring polymers in solution. We call polymers with nontrivial structures in chemical connectivity expressed by graphs "topological polymers". Graphs with no loop have only trivial topology, while graphs with loops such as multiple-rings may have nontrivial topology of spatial graphs as embeddings in three dimensions, e.g., knots or links in some loops. We thus call also such polymers with nontrivial topology "topological polymers", for simplicity. For various polymers with different structures in chemical connectivity, we numerically evaluate the mean-square radius of gyration and the hydrodynamic radius systematically through simulation. We evaluate the ratio of the gyration radius to the hydrodynamic radius, which we expect to be universal from the viewpoint of the renormalization group. Furthermore, we show that the short-distance intrachain correlation is much enhanced for real topological polymers (the Kremer⁻Grest model) expressed with complex graphs. We then address topological properties of ring polymers in solution. We define the knotting probability of a knot K by the probability that a given random polygon or self-avoiding polygon of N vertices has the knot K. We show a formula for expressing it as a function of the number of segments N, which gives good fitted curves to the data of the knotting probability versus N. We show numerically that the average size of self-avoiding polygons with a fixed knot can be much larger than that of no topological constraint if the excluded volume is small. We call it "topological swelling".

4.
J Chem Phys ; 145(16): 164905, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27802658

ABSTRACT

For various polymers with different structures in chemical connectivity expressed by graphs, we numerically evaluate the mean-square radius of gyration and the hydrodynamic radius systematically through simulation. We call polymers with nontrivial structures in chemical connectivity and those of nontrivial topology of spatial graphs as embeddings in three dimensions topological polymers. We evaluate the two quantities both for ideal and real chain models and show that the ratios of the quantities among different structures in chemical connectivity do not depend on the existence of excluded volume if the topological polymers have only up to trivalent vertices, as far as the polymers investigated. We also evaluate the ratio of the gyration radius to the hydrodynamic radius, which we expect to be universal from the viewpoint of renormalization group. Furthermore, we show that the short-distance intrachain correlation is much enhanced for real topological polymers (the Kremer-Grest model) expressed with complex graphs.

5.
J Phys Condens Matter ; 27(35): 354104, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26292079

ABSTRACT

We present a self-avoiding polygon (SAP) model for circular DNA in which the radius of impermeable cylindrical segments corresponds to the screening length of double-stranded DNA surrounded by counter ions. For the model we evaluate the probability for a generated SAP with N segments having a given knot K through simulation. We call it the knotting probability of a knot K with N segments for the SAP model. We show that when N is large the most significant factor in the knotting probability is given by the exponentially decaying part exp(-N/NK), where the estimates of parameter NK are consistent with the same value for all the different knots we investigated. We thus call it the characteristic length of the knotting probability. We give formulae expressing the characteristic length as a function of the cylindrical radius rex, i.e. the screening length of double-stranded DNA.


Subject(s)
Computer Simulation , DNA, Circular/chemistry , DNA/chemistry , Nucleic Acid Conformation , Algorithms , Humans , Models, Chemical , Monte Carlo Method
6.
J Chem Phys ; 140(4): 044902, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-25669578

ABSTRACT

For a double-ring polymer in solution we evaluate the mean-square radius of gyration and the diffusion coefficient through simulation of off-lattice self-avoiding double polygons consisting of cylindrical segments with radius rex of unit length. Here, a self-avoiding double polygon consists of twin self-avoiding polygons which are connected by a cylindrical segment. We show numerically that several statistical and dynamical properties of double-ring polymers in solution depend on the linking number of the constituent twin ring polymers. The ratio of the mean-square radius of gyration of self-avoiding double polygons with zero linking number to that of no topological constraint is larger than 1, in particular, when the radius of cylindrical segments rex is small. However, the ratio is almost constant with respect to the number of vertices, N, and does not depend on N. The large-N behavior of topological swelling is thus quite different from the case of knotted random polygons.


Subject(s)
Hydrodynamics , Polymers/chemistry , Computer Simulation , Diffusion , Models, Chemical , Probability , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...