Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34577963

ABSTRACT

Peroxide has been considered a chemical agent that can be used to tune the properties of polymeric materials. This research evaluated the influence of different concentrations of dialkyl peroxides on the mechanical, thermal, and morphological properties of linear low-density polyethylene (LLDPE) and ultra-high molecular weight polyethylene (UHMWPE). The neat polymer, as well as those with the addition of 1% and 2% by mass of dialkyl peroxides, were subjected to compression molding and immersion in water for 1 h, under controlled temperatures of 90 °C. The values of the gel content found in the samples indicated that the addition of peroxide to the LLDPE and to the UHMWPE promoted the formation of a reticulated network. The structure obtained by the crosslinking led to less reorganization of the chains during the crystallization process, resulting in the formation of imperfect crystals and, consequently, in the reduction in melting temperatures, crystallization and enthalpy. The mechanical properties were altered with the presence of the crosslinker. The polymers presented had predominant characteristics of a ductile material, with the occurrence of crazing with an increased peroxide content.

2.
J Mech Behav Biomed Mater ; 18: 29-36, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23237878

ABSTRACT

An evaluation of transient and stabilized strains in the cement mantle during polymerization was carried out in simplified cemented total hip arthroplasty (THA) model. A mathematical approach combined with a simple finite element simulation was used to compare measured and calculated stabilized strain values and to provide the Von Mises stresses at the stem/cement interface due to shrinkage related to temperature decrease after exothermal reaction. A second similar model was carried out to measure stem/cement/mold interfacial shear strength and dimensional changes of the cement mantle to obtain total shrinkage due to temperature decrease plus cement polymerization. The results indicated that positive strain peaks found during the exothermic stage of polymerization have the potential to produce pre-loading cracking. After the initial expansion, it was observed a progressive strain decrease pattern down to stabilized values that takes place near 2h after the cementation. Even though there is a great deal of dispersion in the measured stabilized strain values, in average those values match quite well with the numerical simulations, indicating 4,7 MPa von Mises interfacial stress due to thermal shrinkage. The total cement shrinkage leads to a negative radial stress of 11 MPa and 14 MPa von Mises interfacial stress. Finally, total shrinkage has the potential to enhance gaps in the cement/mold interface.


Subject(s)
Arthroplasty, Replacement, Hip , Bone Cements , Models, Theoretical , Polymethyl Methacrylate , Stress, Mechanical , Temperature , Bone Cements/chemistry , Polymerization , Polymethyl Methacrylate/chemistry , Pressure , Shear Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...