Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Antibiot (Tokyo) ; 70(3): 264-271, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28074049

ABSTRACT

We characterized in vitro activities of α-methoxyimino acylides against macrolide-resistant clinical isolates of Streptococcus pneumoniae, Streptococcus pyogenes and Mycoplasma pneumoniae with ribosome modification or substitution and selected acylide-resistant mutants to clarify the binding point of the acylides. The acylides had low MICs against erm(B) gene-containing S. pneumoniae and S. pyogenes (MIC90s, 1-4 µg ml-1). For M. pneumoniae, although they had poor potencies against macrolide-resistant strains with the A2058G (Escherichia coli numbering) mutation in 23S rRNA (MICs, >32 µg ml-1), one of them showed in vitro activities against macrolide-resistant strains with the A2058U or A2059G mutations (MICs, 0.5-1 µg ml-1). These A2058U and A2059G mutant strains were used for the selection of acylide-resistant mutants. A genetic analysis showed that new point mutations in acylide-resistant mutants were found at G2576 in domain V of 23S rRNA and at Lys90 in L22 ribosomal protein. Furthermore, a molecular modeling study revealed that G2505/C2610, which enables stacking with G2576, might interact with a pyridyl moiety or an α-methoxyimino group at the 3-position of acylides. The α-methoxyimino acylides were shown to possess a tertiary binding point at G2505/C2610 in 23S rRNA. Our results suggest that α-methoxyimino acylides represent significant progress in macrolide antimicrobials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , RNA, Ribosomal, 23S/genetics , Macrolides/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Mutation , Mycoplasma pneumoniae/drug effects , Mycoplasma pneumoniae/genetics , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/genetics
2.
J Biol Chem ; 280(52): 42715-22, 2005 Dec 30.
Article in English | MEDLINE | ID: mdl-16257959

ABSTRACT

In Alzheimer disease (AD), the microtubule-associated protein tau is found hyperphosphorylated in paired helical filaments. Among many phosphorylated sites in tau, Ser-262 is the major site for abnormal phosphorylation of tau in AD brain. The kinase known to phosphorylate this particular site is MARK2, whose activation mechanism is yet to be studied. Our first finding that treatment of cells with LiCl, a selective inhibitor of another major tau kinase, glycogen synthase kinase-3beta (GSK-3beta), inhibits phosphorylation of Ser-262 of tau led us to investigate the possible involvement of GSK-3beta in MARK2 activation. In vitro kinase reaction revealed that recombinant GSK-3beta indeed phosphorylates MARK2, whereas it failed to phosphorylate Ser-262 of tau. Our further findings led us to conclude that GSK-3beta phosphorylates MARK2 on Ser-212, one of the two reported phosphorylation sites (Thr-208 and Ser-212) found in the activation loop of MARK2. Down-regulation of either GSK-3beta or MARK2 by small interfering RNAs suppressed the level of phosphorylation on Ser-262. These results, respectively, indicated that GSK-3beta is responsible for phosphorylating Ser-262 of tau through phosphorylation and activation of MARK2 and that the phosphorylation of tau at this particular site is predominantly mediated by a GSK-3beta-MARK2 pathway. These findings are of interest in the context of the pathogenesis of AD.


Subject(s)
Gene Expression Regulation, Enzymologic , Glycogen Synthase Kinase 3/metabolism , Protein Serine-Threonine Kinases/metabolism , Alzheimer Disease/metabolism , Binding Sites , Blotting, Western , Brain/metabolism , Cell Line , Down-Regulation , Enzyme Activation , Glycogen Synthase Kinase 3 beta , Humans , Hybridomas/metabolism , Phosphorylation , Plasmids/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Recombinant Proteins/chemistry , Serine/chemistry , Threonine/chemistry , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...