Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 108: 117777, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38852256

ABSTRACT

The design and synthesis of N-desmethyl and N-methyl destruxin E analogs have been demonstrated. The X-ray single crystal structure of destruxin E (1a) revealed a stable three-dimensional (3D) structure, including a s-cis amide bond at the MeVal-MeAla moiety and two intramolecular hydrogen bonds between NH(ß-Ala) and OC(Ile) and between NH(Ile) and OC(ß-Ala). N-Desmethyl analogs 2a (MeAla â†’ Ala) and 2b (MeVal â†’ Val) were synthesized through macrolactonization similar to our previously reported synthesis of 1a. Conversely, for the synthesis of N-methyl analogs 2c (Ile â†’ MeIle) and 2d (ß-Ala â†’ Meß-Ala), macrolactonization did not proceed; therefore, cyclization precursors 10c and 10d were designed to maintain the intramolecular hydrogen bonds described above during their cyclization. The macrolactamization proceeded despite the presence of a less reactive N-methylamino group at the N-terminus in both cases. Analog 2a, which exhibits multiple conformers in solutions, was inactive at 50 µM, whereas analog 2b, which exhibits a conformation similar to that of 1a in solutions, exhibited morphological changes against osteoclast-like multinuclear cells at 1.6 µM. The activity of the MeIle analog 2c, which cannot take the intramolecular hydrogen bond (Ile)NH•••OC(ß-Ala) in 1a, was markedly diminished compared with that of 1a, and that of the Meß-Ala analog 2d, which cannot take the intramolecular hydrogen bond (ß-Ala)NH•••OC(Ile) in 1a, was further reduced to one-fourth of that of 2c. The overall results indicate that both the s-cis amide bond at the MeVal-MeAla moiety and two intramolecular hydrogen bonds (ß-Ala)NH•••OC(Ile) and (Ile)NH•••OC(ß-Ala) are important for constraining the conformation of the macrocyclic peptide backbone in destruxin E, thereby exhibiting its potent biological activity.


Subject(s)
Osteoclasts , Structure-Activity Relationship , Osteoclasts/drug effects , Osteoclasts/cytology , Mice , Animals , Crystallography, X-Ray , Molecular Structure , Hydrogen Bonding , Dose-Response Relationship, Drug , Models, Molecular
2.
Heliyon ; 10(11): e31548, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845875

ABSTRACT

This study discusses the composition and structure determination of a new multicomponent system from antiinflammatory natural ingredients, consisting of piperine (Pip) and 4-hydroxybenzoic acid (HBA), named Pip-HBA. In addition, this research studied its solubility and anti-inflammatory activity. After screening the stoichiometric proportions, this multicomponent system formation reaction was carried out using the solvent-dropped grinding and evaporation methods. Characterizations using solid analysis including differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR), confirmed the formation of Pip-HBA. These multicomponent systems showed different thermograms and diffractograms. Furthermore, the FTIR spectrum of Pip-HBA multicomponent system differs from the physical mixture and its constituent components. Single crystal diffractometry (SCXRD) determined Pip-HBA to be a new multicomponent system structure in three dimensions. Pip-HBA showed increased solubility and anti-inflammatory activity compared to single piperine. Therefore, Pip-HBA multicomponent system has quite potential for further preparation development.

3.
J Org Chem ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913719

ABSTRACT

In contrast to self-assembly in solution systems, the construction of well-defined assemblies in the solid state has long been identified as a challenging task. Herein, we report the formation of tweezers-shaped molecules into various assemblies through a solid-state self-assembly strategy. The relatively flexible molecular tweezers undergo exclusive and quantitative assembly into either cyclic hexamers or a porous network through classical recrystallization or the exposure of powders to solvent vapor, despite the fact that they form only dimers in solution. The cyclic hexamers have high thermal stability and exhibit moderate solid-state fluorescence. The formation of heterologous assemblies consisting of different tweezers allows for tuning these solid-state properties of the cyclic hexamer. Furthermore, (trimethylsilyl)ethynyl-substituted tweezers demonstrate solvent-vapor-induced dynamic interconversion between the cyclic hexamer and a pseudocyclic dimer in the solid state. This assembly behavior, which has been studied extensively in solution-based supramolecular chemistry, had not been accomplished in the solid state so far.

4.
J Am Chem Soc ; 146(3): 1832-1838, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38206810

ABSTRACT

Isomerism in covalent organic frameworks (COFs) has scarcely been known. Here, for the first time we show 3D COFs with three framework isomers or polymorphs constructed from the same building blocks. All isomers were obtained as large (>10 µm) crystals; although their crystal shapes were distinctly different, they showed identical FT-IR and solid-state NMR spectra. Our structural analyses revealed unprecedented triple isomerism in 3D COFs (noninterpenetrated dia, qtz, and 3-fold interpenetrated dia-c3 nets). Furthermore, this Communication reports the first known COF with qtz topology for which the structure determination was based on Rietveld analysis. We achieved triple framework isomerism by reticulating a tetrahedral building block with a flexible junction and a linear building block with PEO side chains and by varying solution compositions. Our energy calculations, along with the discovery of interisomer transition, revealed that the isomer with qtz topology was a kinetic isomer. Thus, this simple yet little-explored concept of reticulating only flexible building blocks is an effective pathway to significantly broaden the diversity of 3D COFs, which have been proposed for a myriad of applications.

5.
J Phys Chem B ; 127(20): 4554-4561, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37191388

ABSTRACT

Intramolecular singlet fission (iSF) is an efficient strategy of multiexciton generation via a singlet exciton splitting into a correlated triplet pair in one organic molecule with more than two chromophores. Propeller-shaped iptycene-linked triisopropylsilyl(TIPS)-ethynyl functionalized pentacene oligomers (pent-monomer, pent-dimer, and pent-trimer) were synthesized, and the iSF dynamics of pent-dimer and -trimer were monitored by a visible-near-IR transient absorption (TA) spectroscopy. Quantum yields of the triplet pair, ∼80%, of both estimated by near-IR TA spectral analysis are in good agreement with the results of global analysis and triplet sensitization experiments. The iSF rate of pent-trimer is slightly faster than that of pent-dimer even with one more chromophore site. The unexpectedly weak difference indicates the existence of an intermediate process to realize iSF. The intermediate process might be determined by through-bond electronic coupling of the homoconjugation bridge in the pentacene oligomers. Our results suggest the importance of the rigid bridge to the fast iSF rate and the elongated lifetime of the correlated triplet pair in pentacene oligomers.

6.
Angew Chem Int Ed Engl ; 62(24): e202304041, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37041121

ABSTRACT

Covalent organic cages have potential applications in molecular inclusion/recognition and porous organic crystals. Bridging arene units with sp3 atoms enables facile construction of rigid isolated internal vacancies, and various prismatic arene cages have been synthesized by kinetically controlled covalent bond formation. However, the synthesis of a tetrahedral one, which requires twice as much bond formation as prismatic ones, has been limited to a thermodynamically controlled dynamic SN Ar reaction, and this reversible covalent bond formation made the resulting cage product chemically unstable. Here we report the Rh-catalyzed high-yielding and highly 1,3,5-selective room temperature [2+2+2] cycloaddition of push-pull alkynes and its application to the synthesis of chemically stable aryl ether cages of various shapes and sizes, including prismatic and tetrahedral forms. These aryl ether cages are highly crystalline and intertwine with each other to form regular packing structures. Some aryl ether cages encapsulated isolated water molecules in their hydrophobic cavity by hydrogen bonding with the multiple ester moieties.

7.
Nat Commun ; 13(1): 3660, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790726

ABSTRACT

Soft-crystals are defined as flexible molecular solids with highly ordered structures and have attracted attention in molecular sensing materials based on external triggers and environments. Here, we show the soft-crystal copolymerization of green-luminescent Tb(III) and yellow-luminescent Dy(III) coordination centers. Soft-crystal polymerization is achieved via transformation of monomeric dinuclear complexes and polymeric structures with respect to coordination number and geometry. The structural transformation is characterized using single-crystal and powder X-ray diffraction. The connected Tb(III) crystal-Dy(III) crystal show photon energy transfer from the Dy(III) centre to the Tb(III) centre under blue light excitation (selective Dy(III) centre excitation: 460 ± 10 nm). The activation energy of the energy transfer is estimated using the temperature-dependent emission lifetimes and emission quantum yields, and time-dependent density functional theory (B3LYP) calculations. Luminescence-conductive polymers, photonic molecular trains, are successfully prepared via soft-crystal polymerization on crystal media with remarkable long-range energy migration.

8.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 3): 259-263, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35371545

ABSTRACT

The crystal structure of two multi-component crystals of ciprofloxacin [systematic name: 1-cyclo-propyl-6-fluoro-4-oxo-7-(piperazin-1-yl)quinoline-3-carb--oxy-lic acid], a fluoro-quinolone anti-biotic, namely, ciprofloxacin 2,6-di-hydroxy-benzoate salt, C17H19FN3O3 +·C7H5O4 -, (I), and ciprofloxacin hydro-chloride-3,5-di-hydroxy-benzoic-water (1/1/1), C17H19FN3O3 +·Cl-·C7H6O4·H2O, (II), were determined. In (I) and (II), the ciprofloxacin cations are connected via head-to-tail N-H⋯O hydrogen bonding. Both structures show an alternating layered arrangement between ciprofloxacin and di-hydroxy-benzoic acid.

9.
Molecules ; 27(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35408567

ABSTRACT

This research dealt with the composition, structure determination, stability, and antibiotic potency of a novel organic salt composed of levofloxacin (LF) and citric acid (CA), named levofloxacin-citrate (LC). After a stoichiometric proportion screening, the antibiotic-antioxidant reaction was conducted by slow and fast evaporation methods. A series of characterizations using thermal analysis, powder X-ray diffractometry, vibrational spectroscopy, and nuclear magnetic resonance confirmed LC formation. The new organic salt showed a distinct thermogram and diffractogram. Next, Fourier transform infrared indicated the change in N-methylamine and carboxylic stretching, confirmed by 1H nuclear magnetic resonance spectra to elucidate the 2D structure. Finally, single-crystal diffractometry determined LC as a new salt structure three-dimensionally. The attributive improvements were demonstrated on the stability toward the humidity and lighting of LC compared to LF alone. Moreover, the antibiotic potency of LF against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) enhanced ~1.5-2-fold by LC. Hereafter, LC is a potential salt antibiotic-antioxidant combination for dosage formulas development.


Subject(s)
Citric Acid , Levofloxacin , Anti-Bacterial Agents/pharmacology , Antioxidants , Citric Acid/chemistry , Levofloxacin/chemistry , Levofloxacin/pharmacology , Spectroscopy, Fourier Transform Infrared
10.
Chemistry ; 28(21): e202200064, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35194855

ABSTRACT

A high-yielding new route to substituted cycloparaphenylenes has been developed via reductive aromatization of a diyne bearing two cyclohexadiene units giving a cyclophenylene-ethynylene (CPE) followed by the cationic rhodium(I)/dppe complex-catalyzed intermolecular [2+2+2] cycloaddition (cycloaromatization) of the CPE with monoynes. The thus-obtained products, substituted [8]cycloparaphenylene-triphenylenes ([8]CPPTs), exhibited definite aggregation-induced emission (AIE). This molecule is noteworthy as a novel AIE-active cycloarylene that does not have well-known AIE luminogens, such as tetraphenylethene and 1,2,4,5-tetraphenylbenzene skeletons. The single-crystal X-ray diffraction analyses of the AIE-active [8]CPPTs revealed their highly ordered packing structures in which the rotation of the triphenylene moieties is restricted.

11.
Angew Chem Int Ed Engl ; 61(15): e202200800, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35166005

ABSTRACT

We report the synthesis of a [20]cyclophenacene-type cyclophenylene-naphthylene (CPN) belt and the enantioselective synthesis of chiral-type CPN belts (up to >99 % ee) by the cationic rhodium(I)-catalyzed intramolecular [2+2+2] cycloaddition of naphthalene-embedded cyclic polyynes. The synthesis of a depth-expanded CPN belt was also attempted, but the final intramolecular [2+2+2] cycloaddition was unsuccessful. Theoretical calculations clarified that the reactivity depends on the stability of the transition state in the initial oxidative cycloaddition step which is subject to molecular strain. The cylindrical structures of these CPN belts were confirmed by X-ray crystallographic analyses. As a result of π-extension through the introduction of naphthalenes in the chiral-type CPN belts, the anisotropy dissymmetry factors of electronic circular dichroism and circularly polarized luminescence are amplified compared with the corresponding zigzag-type chiral cyclophenylene belts.

12.
J Pharm Sci ; 111(3): 618-627, 2022 03.
Article in English | MEDLINE | ID: mdl-34728174

ABSTRACT

Dehydration strongly influences the stability of hydrate drug substances. Consequently, the ability to predict dehydration of crystalline hydrate using the intermolecular interactions of water molecules contained in the crystals is essential for drug development. The conventional method employed to predict the propensity for dehydration uses the dehydration temperature, which is related to how tightly water molecules are bound in the crystal lattice. However, it is difficult to predict the dehydration propensity of a particular hydrate using only the dehydration temperature because other kinetic factors affect dehydration behavior, such as intermolecular interactions, and drug-substance-to-water molar ratio in a hydrate. In this study, we explored the use of the dehydration activation energy Ea and rehydration behavior to classify 11 pharmaceutical hydrates into three classes according to their kinetic behavior related to the thermodynamic factors of hydrates. There is good agreement between these classes and hydrate crystal structures determined from single-crystal X-ray diffraction, and thus, the classification reflects their crystal structural features. We compared Ea to the dehydration temperatures for each class and found that Ea plays a crucial role and is better than the temperature for quantitative differentiation of the dehydration propensities in these hydrates.


Subject(s)
Dehydration , Water , Crystallization/methods , Fluid Therapy , Humans , Pharmaceutical Preparations , Water/chemistry , X-Ray Diffraction
13.
Pharmaceutics ; 15(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36678753

ABSTRACT

Recently, solid-state engineering has become a promising approach to improving the stability and potency of antibiotics. Levofloxacin (LF) is a broad-spectrum fluoroquinolone antibiotic marketed in solid and solution dosage forms. However, this substance forms solid hydrates under ambient conditions and degrades due to lighting, which may change its solid properties and dose. In addition, resistance cases have been reported due to long-time antibiotic usage. This research aims to allow LF to react with antioxidant dihydroxybenzoic acid (DHBA), which has low antimicrobial activity, to produce a more stable compound under water and lighting conditions and improve LF's potency. The experiment begins with a screening to select potential DHBA isomers that can react with LF and predict the stoichiometric ratio using phase diagrams, which show that 2,6-DHBA and 3,5-DHBA are prospective antioxidants that can react with LF in a (1:1) molar ratio. Multicomponent systems are prepared by dissolving the LF-DHBA mixture in (1:1) ethanol-methanol (95% grade) and evaporating it. Then, the new solid phase formation is confirmed by thermal analysis and powder X-ray diffractometry. Next, infrared spectrophotometry and neutron magnetic resonance analyses are used to identify the LF-DHBA's interactions. Finally, single-crystal X-ray diffractometry is used to solve the three-dimensional structure of the multicomponent system. We then conduct a hygroscopicity and stability test followed by a lighting and potency test using the microdilution method. Our data reveal that both reactions produce salts, which are named LF-26 and LF-35, respectively. Structurally, LF-26 is found in an anhydrous form with a triclinic crystal packing, while LF-35 is a hemihydrate in a monoclinic system. Afterward, both salts are proven more stable regarding water adsorption and UV lighting than LF. Finally, both multicomponent systems have an approximately two-fold higher antibiotic potency than LF. LF-26 and LF-35 are suitable for further development in solid and liquid dosage formulations, especially LF-35, which has superior stability compared with LF-26.

14.
Mater Horiz ; 8(12): 3449-3456, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34751288

ABSTRACT

Triplet-sensitized photon upconversion (UC) has been proposed for broad applications. However, the quest for superior solid materials has been challenged by the poor exciton transport often caused by low crystallinity, a small crystal domain, and aggregation of triplet sensitizers. Here, we demonstrate substantial advantages of the van der Waals solid solution concept to yield molecular crystals with extraordinary performance. A 0.001%-order porphyrin sensitizer is dissolved during recrystallization into the molecular crystals of a blue-fluorescent hydrocarbon annihilator, 9-(2-naphthyl)-10-[4-(1-naphthyl)phenyl]anthracene (ANNP), which contains bulky side groups. This attempt yields millimeter-sized, uniformly colored, transparent solid solution crystals, which resolves the long-standing problem of sensitizer aggregation. After annealing, the crystals exhibit unprecedented UC performance (UC quantum yield reaching 16% out of a maximum of 50% by definition; excitation intensity threshold of 0.175 sun; and high photostability of over 150 000 s) in air, which proves that this concept is highly effective in the quest for superior UC solid materials.

15.
J Pharm Sci ; 110(9): 3246-3260, 2021 09.
Article in English | MEDLINE | ID: mdl-34090898

ABSTRACT

A cocrystal of mefenamic acid (MA) - nicotinamide (NA) has been reported to increase the solubility of MA, but it still does not exceed the solubility of sodium mefenamate (SM). Accordingly, this research dealt with a new salt cocrystal arrangement of SM - NA. Cocrystal screening was performed, followed by powder and single-crystal preparation. Solvent drop grinding and slow evaporation at cold and ambient temperatures were employed to produce the multicomponent crystal. Two new salt cocrystals were found as hemihydrates and monohydrates, named SMN-HH and SMN-MH, respectively. SMN-MH single crystals were successfully isolated and structurally analyzed using a single crystal X-ray diffractometer. Pharmaceutical properties were investigated, including hydrate stability, solubility, and intrinsic dissolution. The experiments showed that the hemihydrate was stable under ambient humidity and temperature, and that the monohydrate rapidly changed to hemihydrate. Both hydrates improved the solubility and intrinsic dissolution of SM, but SMN-HH was superior. The data showed that SMN salt cocrystals combine the advantages of salt and cocrystals and show potential for dosage form development.


Subject(s)
Niacinamide , Sodium , Crystallization , Powders , Solubility , X-Ray Diffraction
16.
Chem Commun (Camb) ; 57(52): 6360-6363, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34105536

ABSTRACT

A novel electron-deficient macrocycle, pillar[6]quinone (P[Q]6), has been synthesized for the first time by both chemical and electrochemical oxidation of pillar[6]arene, showing clear hexagonal columnar stacking in the solid state. Cathodic voltammetric studies of P[Q]6 revealed that three electrons are injected first, followed by stepwise one-electron reductions.

17.
Acta Crystallogr C Struct Chem ; 77(Pt 1): 56-60, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33397825

ABSTRACT

Crystal-crystal phase transformation by external stimuli has attracted significant attention for application in switchable materials, which can change their structures and properties. Herein, it is revealed that N-salicylidene-p-aminobenzoic acid crystals undergo a two-step crystal-crystal phase transformation through a gas-solid reaction with aqua-ammonia vapour. The photochromic behaviour of the crystals switched from nonphotochromic to photochromic and back to nonphotochromic via a phase transformation. The two-step phase transformation and photochromic behaviour change were characterized and correlated by X-ray crystal structure analysis, UV-Vis spectroscopy, differential scanning calorimetry and scanning electron microscopy. This article is the first report to capture the stepwise structural change in the gas-solid (acid-base) reaction of ammonia with benzoic acid derivatives.

18.
Chemistry ; 27(11): 3665-3669, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33159368

ABSTRACT

Thermal isomerization of cyclobutaphenanthrene to o-quinodimethane was investigated. Sterically congested substituents or electron-donating substituents on the four-membered ring promoted the ring-opening, affording o-quinodimethane in a relatively stable form. Isolation of the newly prepared o-quinodimethane allowed its structural elucidation and investigation of its potential reactivities. Dual [4+2] cycloaddition of an aryne and o-quinodimethane afforded tetrabenzopentacene, demonstrating the synthetic application of the isolated compound.

19.
Chem Commun (Camb) ; 56(95): 14988-14991, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33179656

ABSTRACT

Herein, a simple and practical method for generating isoacenofuran, a new π-extended quinoidal building block, was developed. A three-step protocol involving double nucleophilic additions of alkynyllithiums to acene-2,3-dicarbaldehyde, mono-oxidation, and acid-promoted cyclization enables the generation of the target molecule, which is trapped by a dienophile to produce highly condensed acenequinones. Further transformations by double nucleophilic additions of alkynyllithium to hexacenequinone, followed by reductive aromatization, produce tetraalkynylhexacenes with a remarkably higher stability than that of the previously reported substituted hexacenes.

20.
Org Lett ; 22(16): 6687-6691, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32806152

ABSTRACT

An efficient transformation of dibenzoxaborins to dibenzofurans by deborylative ring contraction was achieved under mild conditions using a copper catalyst. The method showed a broad substrate scope enabling the preparation of various dibenzofurans, including those bearing a functional group. The ready availability of various dibenzoxaborins enhances the utility of this method, as demonstrated by the regiodivergent synthesis of dibenzofurans.

SELECTION OF CITATIONS
SEARCH DETAIL
...