Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 282(9): 6548-55, 2007 Mar 02.
Article in English | MEDLINE | ID: mdl-17197442

ABSTRACT

At axon initial segments and nodes of Ranvier in neurons, the spectrin membrane skeleton plays roles in physically stabilizing the plasma membrane integrity and in clustering voltage-gated sodium channels for proper conduction of the action potential. betaIV-Spectrin, an essential component of the membrane skeleton at these sites, has an N-terminal-truncated isoform, Sigma6, which is expressed at much higher levels than the full-length isoform Sigma1. To investigate the role of betaIV-spectrin Sigma6, we generated Sigma1-deficient mice with a normal level of Sigma6 expression (Sigma1(-/-) mice), and compared their phenotypes with those of previously generated mice lacking both Sigma1 and Sigma6(Sigma1Sigma6(-/-) mice). The gross neurological defects observed in Sigma1Sigma6(-/-) mice, such as hindleg contraction, were apparently ameliorated in Sigma1(-/-) mice. At cellular levels, Sigma1Sigma6(-/-) and Sigma1(-/-) neurons similarly exhibited waving and swelling of the plasma membrane at axon initial segments and nodes of Ranvier. By contrast, the levels of ankyrin G and voltage-gated sodium channels at these sites, which are significantly reduced in Sigma1Sigma6(-/-) mice, were substantially recovered in Sigma1(-/-) mice. We conclude that the truncated betaIV-spectrin isoform Sigma6 plays a specific role in clustering voltage-gated sodium channels, whereas it is dispensable for membrane stabilization at axon initial segments and nodes of Ranvier.


Subject(s)
Axons/chemistry , Ranvier's Nodes/chemistry , Sodium Channels/metabolism , Spectrin/physiology , Animals , Cytoskeleton , Mice , Mice, Knockout , Mice, Mutant Strains , Neurons , Phenotype , Protein Isoforms , Spectrin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...