Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 56(28): 8130-8133, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28544598

ABSTRACT

Autonomous micro/nano mechanical, chemical, and biomedical sensors require persistent power sources scaled to their size. Realization of autonomous micro-power sources is a challenging task, as it requires combination of wireless energy supply, conversion, storage, and delivery to the sensor. Herein, we realized a solar-light-driven power source that consists of a micro fuel cell (µFC) and a photocatalytic micro fuel generator (µFG) integrated on a single microfluidic chip. The µFG produces hydrogen by photocatalytic water splitting under solar light. The hydrogen fuel is then consumed by the µFC to generate electricity. Importantly, the by-product water returns back to the photocatalytic µFG via recirculation loop without losses. Both devices rely on novel phenomena in extended-nano-fluidic channels that ensure ultra-fast proton transport. As a proof of concept, we demonstrate that µFG/µFC source achieves remarkable energy density of ca. 17.2 mWh cm-2 at room temperature.

2.
Sci Rep ; 5: 11141, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-26053164

ABSTRACT

Efficient photocatalytic water splitting requires effective generation, separation and transfer of photo-induced charge carriers that can hardly be achieved simultaneously in a single material. Here we show that the effectiveness of each process can be separately maximized in a nanostructured heterojunction with extremely thin absorber layer. We demonstrate this concept on WO3/BiVO4+CoPi core-shell nanostructured photoanode that achieves near theoretical water splitting efficiency. BiVO4 is characterized by a high recombination rate of photogenerated carriers that have much shorter diffusion length than the thickness required for sufficient light absorption. This issue can be resolved by the combination of BiVO4 with more conductive WO3 nanorods in a form of core-shell heterojunction, where the BiVO4 absorber layer is thinner than the carrier diffusion length while it's optical thickness is reestablished by light trapping in high aspect ratio nanostructures. Our photoanode demonstrates ultimate water splitting photocurrent of 6.72 mA cm(-2) under 1 sun illumination at 1.23 V(RHE) that corresponds to ~90% of the theoretically possible value for BiVO4. We also demonstrate a self-biased operation of the photoanode in tandem with a double-junction GaAs/InGaAsP photovoltaic cell with stable water splitting photocurrent of 6.56 mA cm(-2) that corresponds to the solar to hydrogen generation efficiency of 8.1%.

3.
Small ; 10(18): 3692-9, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-24863862

ABSTRACT

Nanostructured photoanodes based on well-separated and vertically oriented WO3 nanorods capped with extremely thin BiVO4 absorber layers are fabricated by the combination of Glancing Angle Deposition and normal physical sputtering techniques. The optimized WO3 -NRs/BiVO4 photoanode modified with Co-Pi oxygen evolution co-catalyst shows remarkably stable photocurrents of 3.2 and 5.1 mA/cm(2) at 1.23 V versus a reversible hydrogen electrode in a stable Na2 SO4 electrolyte under simulated solar light at the standard 1 Sun and concentrated 2 Suns illumination, respectively. The photocurrent enhancement is attributed to the faster charge separation in the electronically thin BiVO4 layer and significantly reduced charge recombination. The enhanced light trapping in the nanostructured WO3 -NRs/BiVO4 photoanode effectively increases the optical thickness of the BiVO4 layer and results in efficient absorption of the incident light.

SELECTION OF CITATIONS
SEARCH DETAIL
...