Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
World J Urol ; 42(1): 348, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789804

ABSTRACT

PURPOSE: To determine the prevalence of concomitant squamous metaplasia (SM), the initial histological change from normal urethra to urethral stricture, in bulbar urethral strictures and to investigate the associated clinical factors. METHODS: A retrospective review was conducted on 165 male patients with bulbar urethral strictures who underwent excision and primary anastomosis (EPA) between 2010 and 2020, for whom complete clinical data and excised urethral specimens were available. An experienced pathologist histologically evaluated concomitant SM in paraffin sections of the proximal end of the excised urethra blinded to the clinical data. Disease duration was calculated as the period from the initial diagnosis of urethral stricture to the date of EPA. The association between concomitant SM and clinical background was investigated. RESULTS: SM was identified in 86 (52.1%) patients. The median disease duration in patients with SM (38 months) was significantly longer than that in patients without SM (9 months, p < 0.0001). In multivariate analysis, the longer disease duration, non-traumatic stricture etiology, and failure to maintain urethral rest with urinary diversion via a suprapubic tube for more than 90 days were independent factors predicting concomitant SM. No significant difference was observed in success rates of EPA between patients with SM (93.2%) and those without SM (97.5%, p = 0.18). CONCLUSIONS: Reconstructive urologists need to be aware that concomitant SM is frequent in patients with bulbar urethral stricture, especially in those with long disease duration and those who were voiding volitionally during the period of urethral rest.


Subject(s)
Metaplasia , Urethra , Urethral Stricture , Urologic Surgical Procedures, Male , Humans , Urethral Stricture/epidemiology , Urethral Stricture/pathology , Urethral Stricture/surgery , Male , Retrospective Studies , Middle Aged , Aged , Urethra/pathology , Adult , Urologic Surgical Procedures, Male/methods , Time-to-Treatment
2.
J Biochem ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621657

ABSTRACT

Hydrostatic pressure is a common mechanical stressor that modulates metabolism and reduces cell viability. Eukaryotic cells have genetic programs to cope with hydrostatic pressure stress and maintain intracellular homeostasis. However, the mechanism underlying hydrostatic pressure tolerance remains largely unknown. We have recently demonstrated that Maintenance of telomere capping protein 6 (Mtc6) plays a protective role in the survival of the budding yeast Saccharomyces cerevisiae under hydrostatic pressure stress by supporting the integrity of nutrient permeases. The current study demonstrate that Mtc6 acts as an endoplasmic reticulum (ER) membrane protein. Mtc6 comprises two transmembrane domains, a C-terminal cytoplasmic domain, and a luminal region with 12 Asn (N)-linked glycans attached to it. Serial mutational analyses showed that the cytoplasmic C-terminal amino acid residues GVPS are essential for Mtc6 activity. Multiple N-linked glycans in the luminal region are involved in the structural conformation of Mtc6. Moreover, deletion of MTC6 led to increased degradation of the leucine permease Bap2 under hydrostatic pressure, suggesting that Mtc6 facilitates proper folding of nutrient permeases in the ER under the stress condition. We propose a novel model of molecular function in which the glycosylated luminal domain and cytoplasmic GVPS sequences of Mtc6 cooperatively support the nutrient permease activity.

3.
J Biochem ; 175(5): 551-560, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38168819

ABSTRACT

Lymphedema has become a global health issue following the growing number of cancer surgeries. Curative or supportive therapeutics have long been awaited for this refractory condition. Transcription factor GATA2 is crucial in lymphatic development and maintenance, as GATA2 haploinsufficient disease often manifests as lymphedema. We recently demonstrated that Gata2 heterozygous deficient mice displayed delayed lymphatic recanalization upon lymph node resection. However, whether GATA2 contributes to lymphatic regeneration by functioning in the damaged lymph vessels' microenvironment remains explored. In this study, our integrated analysis demonstrated that dermal collagen fibers were more densely accumulated in the Gata2 heterozygous deficient mice. The collagen metabolism-related transcriptome was perturbed, and collagen matrix contractile activity was aberrantly increased in Gata2 heterozygous embryonic fibroblasts. Notably, soluble collagen placement ameliorated delayed lymphatic recanalization, presumably by modulating the stiffness of the extracellular matrix around the resection site of Gata2 heterozygous deficient mice. Our results provide valuable insights into mechanisms underlying GATA2-haploinsufficiency-mediated lymphedema and shed light on potential therapeutic avenues for this intractable disease.


Subject(s)
Collagen , GATA2 Transcription Factor , Heterozygote , Lymphedema , Animals , Mice , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , Lymphedema/metabolism , Lymphedema/genetics , Lymphedema/pathology , Collagen/metabolism , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Mice, Knockout , Haploinsufficiency , GATA2 Deficiency/metabolism , GATA2 Deficiency/genetics , Mice, Inbred C57BL
4.
iScience ; 25(9): 104942, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36072552

ABSTRACT

Mast cells serve as a first-line defense of innate immunity. Interleukin-6 (IL-6) induced by bacterial lipopolysaccharide (LPS) in mast cells plays a crucial role in antibacterial protection. The zinc finger transcription factor GATA2 cooperatively functions with the ETS family transcription factor PU.1 in multiple mast cell activities. However, the regulatory landscape directed by GATA2 and PU.1 under inflammation remains elusive. We herein showed that a large proportion of GATA2-binding peaks were closely located with PU.1-binding peaks in distal cis-regulatory regions of inflammatory cytokine genes in mast cells. Notably, GATA2 and PU.1 played crucial roles in promoting LPS-mediated inflammatory cytokine production. Genetic ablation of GATA2-PU.1-clustered binding sites at the Il6 -39 kb region revealed its central role in LPS-induced Il6 expression in mast cells. We demonstrate a novel collaborative activity of GATA2 and PU.1 in cytokine induction upon inflammatory stimuli via the GATA2-PU.1 overlapping sites in the distal cis-regulatory regions.

5.
Glycobiology ; 32(9): 778-790, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35713525

ABSTRACT

Mannosyl phosphorylceramide (MIPC) is a membrane lipid classified as a complex sphingolipid in Saccharomyces cerevisiae. MIPC is synthesized by 2 redundant enzymes, Sur1/Csg1 and Csh1, in the Golgi lumen. MIPC consists of 5 subtypes (A, B', B, C, and D-type) according to the position and number of hydroxyl groups on the ceramide moiety. Sur1 exerts higher impact on synthesis of MIPC-B and MIPC-C than Csh1. In this study, we elucidated the roles played by N-glycans attached to Sur1 and Csh1, and dissected the mechanisms underlying substrate recognition by these 2 enzymes. Sur1 carries an N-glycan on Asn-224, whereas Csh1 has N-glycans on Asn-51 and Asn-247. Although intracellular proteins usually harbor core-type N-glycans, the N-glycan on Asn-51 of Csh1 exhibited a unique mannan-like structure containing a long backbone of mannose. Sur1 N224Q and Csh1 N51Q mutants exhibited a decrease in the activity to synthesize specific MIPC subtypes for each enzyme, suggesting that these N-glycans play a role in substrate recognition through their catalytic domains. Moreover, ectopic insertion of an N-glycosylation consensus sequence (NST) at codon 51 of Sur1 (Sur1-NST51) resulted in an artificial modification with mannan, which markedly decreased protein stability. Our results suggest that the diminished stability of the Sur1-NST51 mutant protein could be attributable to potential structural alterations by the mannan. Collectively, the present study reveals essential luminal domains of Sur1 and Csh1 that dictate substrate specificity and/or the protein stabilities via mannan modification.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Carbamates , Glycosyltransferases/metabolism , Mannans/metabolism , Mannosyltransferases/metabolism , Membrane Proteins/chemistry , Mutation , Polysaccharides/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
6.
Genes Cells ; 26(7): 474-484, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33864419

ABSTRACT

Lymphatic recanalization failure after lymphadenectomy constitutes a major risk of lymphedema in cancer surgery. It has been reported that GATA2, a zinc finger transcription factor, is expressed in lymphatic endothelial cells and is involved in the development of fetal lymphatic vessels. GATA3, another member of the GATA family of transcription factors, is required for the differentiation of lymphoid tissue inducer (LTi) cells and is essential for lymph node formation. However, how GATA2 and GATA3 function in recanalization after the surgical extirpation of lymphatic vessels has not been elucidated. Employing a new model of lymphatic recanalization, we examined the lymphatic reconnection process in Gata2 heterozygous deficient (Gata2+/- ) and Gata3 heterozygous deficient (Gata3+/- ) mice. We found that lymphatic recanalization was significantly impaired in Gata2+/- mice, while Gata3+/- mice rarely showed such abnormalities. Notably, the perturbed lymphatic recanalization in the Gata2+/- mice was partially restored by crossing with the Gata3+/- mice. Our results demonstrate for the first time that GATA2 participates in the regeneration of damaged lymphatic vessels and the unexpected suppressive activity of GATA3 against lymphatic recanalization processes.


Subject(s)
GATA2 Transcription Factor/metabolism , Lymph Node Excision/adverse effects , Lymphatic Vessels/metabolism , Lymphedema/metabolism , Postoperative Complications/metabolism , Animals , GATA2 Transcription Factor/genetics , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Heterozygote , Lymphatic Vessels/physiology , Lymphedema/etiology , Mice , Postoperative Complications/etiology , Regeneration
7.
J Cell Sci ; 133(17)2020 09 09.
Article in English | MEDLINE | ID: mdl-32801125

ABSTRACT

Mechanical stresses, including high hydrostatic pressure, elicit diverse physiological effects on organisms. Gtr1, Gtr2, Ego1 (also known as Meh1) and Ego3 (also known as Slm4), central regulators of the TOR complex 1 (TORC1) nutrient signaling pathway, are required for the growth of Saccharomyces cerevisiae cells under high pressure. Here, we showed that a pressure of 25 MPa (∼250 kg/cm2) stimulates TORC1 to promote phosphorylation of Sch9, which depends on the EGO complex (EGOC) and Pib2. Incubation of cells at this pressure aberrantly increased glutamine and alanine levels in the ego1Δ, gtr1Δ, tor1Δ and pib2Δ mutants, whereas the polysome profiles were unaffected. Moreover, we found that glutamine levels were reduced by combined deletions of EGO1, GTR1, TOR1 and PIB2 with GLN3 These results suggest that high pressure leads to the intracellular accumulation of amino acids. Subsequently, Pib2 loaded with glutamine stimulates the EGOC-TORC1 complex to inactivate Gln3, downregulating glutamine synthesis. Our findings illustrate the regulatory circuit that maintains intracellular amino acid homeostasis and suggest critical roles for the EGOC-TORC1 and Pib2-TORC1 complexes in the growth of yeast under high hydrostatic pressure.


Subject(s)
Monomeric GTP-Binding Proteins , Saccharomyces cerevisiae Proteins , Amino Acids , Homeostasis , Hydrostatic Pressure , Mechanistic Target of Rapamycin Complex 1 , Monomeric GTP-Binding Proteins/metabolism , Protein Serine-Threonine Kinases , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Sci Rep ; 9(1): 18341, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31797992

ABSTRACT

Previously, we isolated 84 deletion mutants in Saccharomyces cerevisiae auxotrophic background that exhibited hypersensitive growth under high hydrostatic pressure and/or low temperature. Here, we observed that 24 deletion mutants were rescued by the introduction of four plasmids (LEU2, HIS3, LYS2, and URA3) together to grow at 25 MPa, thereby suggesting close links between the genes and nutrient uptake. Most of the highly ranked genes were poorly characterized, including MAY24/YPR153W. May24 appeared to be localized in the endoplasmic reticulum (ER) membrane. Therefore, we designated this gene as EHG (ER-associated high-pressure growth gene) 1. Deletion of EHG1 led to reduced nutrient transport rates and decreases in the nutrient permease levels at 25 MPa. These results suggest that Ehg1 is required for the stability and functionality of the permeases under high pressure. Ehg1 physically interacted with nutrient permeases Hip1, Bap2, and Fur4; however, alanine substitutions for Pro17, Phe19, and Pro20, which were highly conserved among Ehg1 homologues in various yeast species, eliminated interactions with the permeases as well as the high-pressure growth ability. By functioning as a novel chaperone that facilitated coping with high-pressure-induced perturbations, Ehg1 could exert a stabilizing effect on nutrient permeases when they are present in the ER.


Subject(s)
Biological Transport/genetics , Endoplasmic Reticulum/genetics , Membrane Transport Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence/genetics , Amino Acid Transport Systems/genetics , Endoplasmic Reticulum/enzymology , Membrane Proteins/genetics , Membranes/enzymology , Pressure , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics
9.
Sci Rep ; 9(1): 15603, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31666556

ABSTRACT

Histamine is a biogenic amine that is chiefly produced in mast cells and basophils and elicits an allergic response upon stimulation. Histidine decarboxylase (HDC) is a unique enzyme that catalyzes the synthesis of histamine. Therefore, the spatiotemporally specific Hdc gene expression profile could represent the localization of histamine-producing cells under various pathophysiological conditions. Although the bioactivity of histamine is well defined, the regulatory mechanism of Hdc gene expression and the distribution of histamine-producing cell populations in various disease contexts remains unexplored. To address these issues, we generated a histidine decarboxylase BAC (bacterial artificial chromosome) DNA-directed GFP reporter transgenic mouse employing a 293-kb BAC clone containing the entire Hdc gene locus and extended flanking sequences (Hdc-GFP). We found that the GFP expression pattern in the Hdc-GFP mice faithfully recapitulated that of conventional histamine-producing cells and that the GFP expression level mirrored the increased Hdc expression in lipopolysaccharide (LPS)-induced septic lungs. Notably, a CD11b+Ly6G+Ly6Clow myeloid cell population accumulated in the lung during sepsis, and most of these cells expressed high levels of GFP and indeed contain histamine. This study reveals the accumulation of a histamine-producing myeloid cell population during sepsis, which likely participates in the immune process of sepsis.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Gene Expression Regulation, Enzymologic/drug effects , Green Fluorescent Proteins/genetics , Histidine Decarboxylase/metabolism , Lipopolysaccharides/pharmacology , Myeloid Cells/drug effects , Myeloid Cells/metabolism , Animals , Hematopoiesis/drug effects , Histamine/biosynthesis , Lung/cytology , Lung/drug effects , Lung/metabolism , Mice , Mice, Transgenic , Myeloid Cells/cytology
10.
Genes Cells ; 24(8): 534-545, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31141264

ABSTRACT

Zinc-finger transcription factors GATA2 and GATA3 are both expressed in the developing inner ear, although their overlapping versus distinct activities in adult definitive inner ear are not well understood. We show here that GATA2 and GATA3 are co-expressed in cochlear spiral ganglion cells and redundantly function in the maintenance of spiral ganglion cells and auditory neural circuitry. Notably, Gata2 and Gata3 compound heterozygous mutant mice had a diminished number of spiral ganglion cells due to enhanced apoptosis, which resulted in progressive hearing loss. The decrease in spiral ganglion cellularity was associated with lowered expression of neurotrophin receptor TrkC that is an essential factor for spiral ganglion cell survival. We further show that Gata2 null mutants that additionally bear a Gata2 YAC (yeast artificial chromosome) that counteracts the lethal hematopoietic deficiency due to complete Gata2 loss nonetheless failed to complement the deficiency in neonatal spiral ganglion neurons. Furthermore, cochlea-specific Gata2 deletion mice also had fewer spiral ganglion cells and resultant hearing impairment. These results show that GATA2 and GATA3 redundantly function to maintain spiral ganglion cells and hearing. We propose possible mechanisms underlying hearing loss in human GATA2- or GATA3-related genetic disorders.


Subject(s)
Deafness/etiology , GATA Transcription Factors/metabolism , Spiral Ganglion/metabolism , Animals , Apoptosis/genetics , Cell Count , Cochlea/metabolism , Cochlea/pathology , Deafness/metabolism , Deafness/physiopathology , Disease Models, Animal , GATA Transcription Factors/genetics , Gene Expression , Genes, Reporter , Immunohistochemistry , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/pathology , Spiral Ganglion/pathology
11.
Mol Cell Biol ; 38(21)2018 11 01.
Article in English | MEDLINE | ID: mdl-30126893

ABSTRACT

Transcription factor GATA3 plays vital roles in inner ear development, while regulatory mechanisms controlling its inner ear-specific expression are undefined. We demonstrate that a cis-regulatory element lying 571 kb 3' to the Gata3 gene directs inner ear-specific Gata3 expression, which we refer to as the Gata3 otic vesicle enhancer (OVE). In transgenic murine embryos, a 1.5-kb OVE-directed lacZ reporter (TgOVE-LacZ) exhibited robust lacZ expression specifically in the otic vesicle (OV), an inner ear primordial tissue, and its derivative semicircular canal. To further define the regulatory activity of this OVE, we generated Cre transgenic mice in which Cre expression was directed by a 246-bp core sequence within the OVE element (TgcoreOVE-Cre). TgcoreOVE-Cre successfully marked the OV-derived inner ear tissues, including cochlea, semicircular canal and spiral ganglion, when crossed with ROSA26 lacZ reporter mice. Furthermore, Gata3 conditionally mutant mice, when crossed with the TgcoreOVE-Cre, showed hypoplasia throughout the inner ear tissues. These results demonstrate that OVE has a sufficient regulatory activity to direct Gata3 expression specifically in the otic vesicle and semicircular canal and that Gata3 expression driven by the OVE is crucial for normal inner ear development.


Subject(s)
Ear, Inner/growth & development , GATA3 Transcription Factor/genetics , Gene Expression Regulation, Developmental/genetics , Regulatory Sequences, Nucleic Acid/genetics , Animals , Mice , Mice, Inbred C57BL , Mice, Transgenic
12.
Prog Mol Biol Transl Sci ; 156: 151-195, 2018.
Article in English | MEDLINE | ID: mdl-29747813

ABSTRACT

Since the successful molecular cloning in 1998 of GM3 synthase (GM3S, ST3GAL5), the enzyme responsible for initiating biosynthesis of all complex gangliosides, the efforts of our research group have been focused on clarifying the physiological and pathological implications of gangliosides, particularly GM3. We have identified isoforms of GM3S proteins having distinctive lengths of N-terminal cytoplasmic tails, and found that these cytoplasmic tails define subcellular localization, stability, and in vivo activity of GM3S isoforms. Our studies of the molecular pathogenesis of type 2 diabetes, focused on interaction between insulin receptor and GM3 in membrane microdomains, led to a novel concept: type 2 diabetes and certain other lifestyle-related diseases are membrane microdomain disorders resulting from aberrant expression of gangliosides. This concept has enhanced our understanding of the pathophysiological roles of GM3 and related gangliosides in various diseases involving chronic inflammation, such as insulin resistance, leptin resistance, and T-cell function and immune disorders (e.g., allergic asthma). We also demonstrated an essential role of GM3 in murine and human auditory systems; a common pathological feature of GM3S deficiency is deafness. This is the first direct link reported between gangliosides and auditory functions.


Subject(s)
G(M3) Ganglioside/metabolism , Metabolic Diseases/physiopathology , Animals , Humans
13.
Glycoconj J ; 34(5): 651-659, 2017 10.
Article in English | MEDLINE | ID: mdl-28808804

ABSTRACT

GM3, a major lipid component of the plasma membrane outer leaflet in mammalian cells, is synthesized in the luminal side of Golgi by ST3GAL5 protein (ST3G5), a type II membrane protein. Two strains of St3Gal5 knockout mice have been established for studies of GM3 physiological function: St3Gal5-Ex5-KO (lacking exon 5, which contains the catalytic domain of ST3G5), and St3Gal5-Ex3-KO (lacking exon 3, which contains the initiation codons). Results of the present study demonstrate that GM3 synthesis is still present, at a low level, in liver of St3Gal5-Ex3-KO mice. St3Gal5 has two mRNA transcriptional variants: a-type and b-type. When exon 3 is deleted, ST3G5 is not translated from a-type or b-type, as a result of initiation codon deletion or frame shift. Through NCBI database search and real-time PCR analyses of various mouse tissues, we identified a liver-specific St3Gal5 transcriptional variant (c-type) capable of producing artificial ST3G5 (M*-ST3G5) having GM3 synthase activity in the absence of exon 3. St3Gal5-Ex3-KO mice expressed c-type mRNA without exon 3 (c-type-/-) in liver. The transmembrane and catalytic domains of M*-ST3G5 translated from c-type-/- were identical to those from wild-type, although the cytoplasmic regions differed. Expression of M*-ST3G5 in embryonic fibroblasts derived from St3Gal5-Ex3-KO mice led to GM3 synthesis; M*-ST3G5 thus displayed enzyme activity in vivo. Taken together, our findings indicate that expression of liver-specific c-type variant accounts for the residual GM3 synthase activity observed in liver of St3Gal5-Ex3-KO mice.


Subject(s)
Alternative Splicing , G(M3) Ganglioside/biosynthesis , Liver/enzymology , RNA, Messenger/genetics , Sialyltransferases/genetics , Amino Acid Sequence , Animals , Base Sequence , Exons , Fibroblasts/cytology , Fibroblasts/enzymology , G(M3) Ganglioside/genetics , Gene Expression , Golgi Apparatus/enzymology , Golgi Apparatus/genetics , Introns , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Mice, Knockout , RNA, Messenger/metabolism , Sequence Alignment , Sialyltransferases/metabolism
14.
Biochim Biophys Acta Biomembr ; 1859(10): 2076-2085, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28754537

ABSTRACT

Tryptophan is an essential amino acid in humans and an important serotonin and melatonin precursor. Monocarboxylate transporter MCT10 is a member of the SLC16A family proteins that mediates low-affinity tryptophan transport across basolateral membranes of kidney, small intestine, and liver epithelial cells, although the precise transport mechanism remains unclear. Here we developed a simple functional assay to analyze tryptophan transport by human MCT10 using a deletion mutant for the high-affinity tryptophan permease Tat2 in Saccharomyces cerevisiae. tat2Δtrp1 cells are defective in growth in YPD medium because tyrosine present in the medium competes for the low-affinity tryptophan permease Tat1 with tryptophan. MCT10 appeared to allow growth of tat2Δtrp1 cells in YPD medium, and accumulate in cells deficient for Rsp5 ubiquitin ligase. These results suggest that MCT10 is functional in yeast, and is subject to ubiquitin-dependent quality control. Whereas growth of Tat2-expressing cells was significantly impaired by neutral pH, that of MCT10-expressing cells was nearly unaffected. This property is consistent with the transport mechanism of MCT10 via facilitated diffusion without a need for pH gradient across the plasma membrane. Single-nucleotide polymorphisms (SNPs) are known to occur in the human MCT10 coding region. Among eight SNP amino acid changes in MCT10, the N81K mutation completely abrogated tryptophan import without any abnormalities in the expression or localization. In the MCT10 modeled structure, N81 appeared to protrude into the putative trajectory of tryptophan. Plasma membrane localization of MCT10 and the variant proteins was also verified in human embryonic kidney 293T cells.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Transport Systems, Neutral/genetics , Cell Line , Cell Membrane/metabolism , HEK293 Cells , Humans , Polymorphism, Single Nucleotide/genetics , Tryptophan/metabolism , Tyrosine/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism
15.
Biochim Biophys Acta Biomembr ; 1859(10): 2001-2011, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28709807

ABSTRACT

Glycosphingolipids (GSLs) are abundant in plasma membranes of mammalian cells, and their synthesis is strictly regulated in the Golgi apparatus. Disruption of GSL homeostasis is the cause of numerous diseases. Hundreds of molecular species of GSLs exist, and the detailed mechanisms underlying their homeostasis remain unclear. We investigated the physiological significance of isoform production for ß1,4-N-acetyl-galactosaminyl transferase 1/B4GALNT1 (B4GN1), an enzyme involved in synthesis of ganglio-series GSLs GM2/GD2/GA2. We discovered a new mRNA variant (termed variant 2) of B4GN1 through EST clone search. A new isoform, M1-B4GN1, which has an NH2-terminal cytoplasmic tail longer than that of previously-known isoform M2-B4GN1, is translated from variant 2. M1-B4GN1 has R-based motif (a retrograde transport signal) in the cytoplasmic tail. M1-B4GN1 is partially localized in the endoplasmic reticulum (ER) depending on the R-based motif, whereas M2-B4GN1 is localized in the Golgi. Stability of M1-B4GN1 is higher than that of M2-B4GN1 because of the R-based motif. M2-B4GN1 forms a homodimer via disulfide bonding. When M1-B4GN1 and M2-B4GN1 were co-expressed in CHO-K1 cells, the two isoforms formed a heterodimer. The M1/M2-B4GN1 heterodimer was more stable than the M2-B4GN1 homodimer, but the heterodimer was not transported from the Golgi to the ER. Our findings indicate that stabilization of M1-B4GN1 homodimer and M1/M2-B4GN1 heterodimer by R-based motif is related to prolongation of Golgi retention, but not to retrograde transport from the Golgi to the ER. Coexistence of several B4GN1 isoforms having distinctive characteristics presumably helps maintain overall enzyme stability and GSL homeostasis.


Subject(s)
Arginine/metabolism , Enzyme Stability/physiology , N-Acetylgalactosaminyltransferases/metabolism , Protein Isoforms/metabolism , Amino Acid Sequence , Animals , CHO Cells , Cell Line , Cricetulus , Endoplasmic Reticulum/metabolism , Glycosphingolipids/metabolism , Golgi Apparatus/metabolism , Protein Transport/physiology
16.
Glycobiology ; 25(12): 1410-22, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26362868

ABSTRACT

In the Golgi maturation model, the Golgi cisternae dynamically mature along a secretory pathway. In this dynamic process, glycosyltransferases are transported from the endoplasmic reticulum (ER) to the Golgi apparatus where they remain and function. The precise mechanism behind this maturation process remains unclear. We investigated two glycosyltransferases, ST3Gal5 (ST3G5) and B4GalNAcT1 (B4GN1), involved in ganglioside synthesis and examined their signal sequences for ER export and Golgi retention. Reports have suggested that the [R/K](X)[R/K] motif functions as an ER exporting signal; however, this signal sequence is insufficient in stably expressed, full-length ST3G5. Through further analysis, we have clarified that the (2)R(3)R(X)(5) (9)K(X)(3) (13)K sequence in ST3G5 is essential for ER export. We have named the sequence the R/K-based motif. On the other hand, for ER export of B4GN1, the homodimer formation in addition to the R/K-based motif is required for ER export suggesting the importance of unidentified lumenal side interaction. We found that ST3G5 R2A/R3A and K9A/K13A mutants localized not only in Golgi apparatus but also in endosomes. Furthermore, the amounts of mature type asparagine-linked (N)-glycans in ST3G5 R2A/R3A and K9A/K13A mutants were decreased compared with those in wild-type proteins, and the stability of the mutants was lower. These results suggest that the R/K-based motif is necessary for the Golgi retention of ST3G5 and that the retention is involved in the maturation of N-glycans and in stability. Thus, several basic amino acids located on the cytoplasmic tail of ST3G5 play important roles in both ER export and Golgi retention.


Subject(s)
Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , N-Acetylgalactosaminyltransferases/metabolism , Protein Sorting Signals , Sialyltransferases/metabolism , Amino Acid Motifs , Animals , Arginine/genetics , CHO Cells , Cricetinae , Cricetulus , Lysine/genetics , Mice , Mutation , N-Acetylgalactosaminyltransferases/chemistry , N-Acetylgalactosaminyltransferases/genetics , Protein Structure, Tertiary , Protein Transport , Sialyltransferases/chemistry , Sialyltransferases/genetics
17.
FEMS Yeast Res ; 15(5): fov044, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26071436

ABSTRACT

In Saccharomyces cerevisiae, high-affinity tryptophan import is performed by subtle mechanisms involving tryptophan permease Tat2. We have shown that Tat2 requires 15 amino acid residues in the transmembrane domains (TMDs) for its import activity, whereas leucine permease Bap2 requires only seven corresponding residues for its leucine import. For this reason, the structure of Tat2 is elaborately designed to transport the hydrophobic and bulky tryptophan. Newly synthesized cell surface proteins first undergo endoplasmic reticulum (ER)-associated quality check before entering the secretory pathway. In this study, we used domain replacement with general amino acid permease Gap1 to show that Tat2 chimeric proteins were dysfunctional when TMD10 or TMD11 was replaced. These chimeras formed large 270-800-kDa protein complexes and were stably retained in the ER membrane without efficient degradation. In contrast, Tat2 chimeras of TMD9 or TMD12 retained some of their tryptophan import activity and underwent vacuolar degradation as observed with wild-type Tat2. Thus, ours results suggest that TMD10 and TMD11 are essential for the correct folding of Tat2, probably because of their interdomain interactions. Notably, overexpression of Tat2-Gap1 chimera of TMD10 activated the unfolded protein response (UPR) element-lacZ reporter, suggesting that ER retention of the protein aggregates induces the UPR.


Subject(s)
Amino Acid Transport Systems/genetics , Protein Folding , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Unfolded Protein Response/genetics , Amino Acid Transport Systems/metabolism , Endoplasmic Reticulum/metabolism , Protein Structure, Tertiary/genetics , Protein Transport/genetics , Recombinant Fusion Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
18.
Eukaryot Cell ; 13(11): 1380-92, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25172766

ABSTRACT

The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepTst and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepTst are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2Δtrp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation.


Subject(s)
Binding Sites/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Protein Transport/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Carrier Proteins/genetics , Crystallography, X-Ray , Cycloheximide/pharmacology , Endosomal Sorting Complexes Required for Transport/metabolism , Membrane Transport Proteins/ultrastructure , Protein Synthesis Inhibitors/pharmacology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Streptococcus thermophilus/genetics , Streptococcus thermophilus/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitination
19.
J Lipid Res ; 55(7): 1343-56, 2014 07.
Article in English | MEDLINE | ID: mdl-24875539

ABSTRACT

In the yeast Saccharomyces cerevisiae, structural diversities of complex sphingolipids [inositol phosphorylceramide (IPC), mannosylinositol phosphorylceramide, and mannosyldiinositol phosphorylceramide] are often observed in the presence or absence of hydroxyl groups on the C-4 position of long-chain base (C4-OH) and the C-2 position of very long-chain fatty acids (C2-OH), but the biological significance of these groups remains unclear. Here, we evaluated cellular membrane fluidity in hydroxyl group-defective yeast mutants by fluorescence recovery after photobleaching. The lateral diffusion of enhanced green fluorescent protein-tagged hexose transporter 1 (Hxt1-EGFP) was influenced by the absence of C4-OH and/or C2-OH. Notably, the fluorescence recovery of Hxt1-EGFP was dramatically decreased in the sur2Δ mutant (absence of C4-OH) under the csg1Δcsh1Δ background, in which mannosylation of IPC is blocked leading to IPC accumulation, while the recovery in the scs7Δ mutant (absence of C2-OH) under the same background was modestly decreased. In addition, the amount of low affinity tryptophan transporter 1 (Tat1)-EGFP was markedly decreased in the sur2Δcsg1Δcsh1Δ mutant and accumulated in intracellular membranes in the scs7Δcsg1Δcsh1Δ mutant without altering its protein expression. These results suggest that C4-OH and C2-OH are most probably critical factors for maintaining membrane fluidity and proper turnover of membrane molecules in yeast containing complex sphingolipids with only one hydrophilic head group.


Subject(s)
Cell Membrane/metabolism , Ceramides/metabolism , Membrane Proteins/metabolism , Mixed Function Oxygenases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cell Membrane/genetics , Ceramides/genetics , Membrane Proteins/genetics , Mixed Function Oxygenases/genetics , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
20.
Glycoconj J ; 31(2): 101-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23999868

ABSTRACT

The ganglioside GM4 is a sialic acid-containing glycosphingolipid mainly expressed in mammalian brain and erythrocytes. GM4 is synthesized by the sialylation of galactosylceramide (GalCer), while the ganglioside GM3 is synthesized by the sialylation of lactosylceramide (LacCer). Recently, the enzyme GM3 synthase was found to be responsible for the synthesis of GM4 in vitro and in vivo, yet the mechanism behind GM4 expression in cells remains unclear. In this study, we attempted to establish GM4-reconstituted cells to reveal the regulation of GM4 synthesis. Interestingly, GM4 was not detected in RPMI 1846 cells expressing LacCer, GalCer, and GM3. Similarly, GM4 was not detected in CHO-K1 cells, even when such cells expressing LacCer and GM3 were stably transfected with the GalCer synthase (GalCerS) gene. GM4 became detectable only when the GM3/GM4 synthase (GM3/GM4S, ST3GAL5) gene was overexpressed in either RPMI 1846 or CHO-K1/GalCerS cells. A mutant of the B16 melanoma cell line, GM-95, lacks GlcCer and LacCer, due to an absence of GlcCer synthase, but carries endogenous LacCer synthase and GM3/GM4S. GalCer became detectable after transfection of GalCerS into GM95 cells, but the GM95/GalCerS reconstituted cells did not express GM4, indicating that competition between the substrates LacCer and GalCer for GM3/GM4S does not cause the failure of GM4 synthesis. These results suggest that the expression machinery of GM4 under physiological conditions is independent from that of GM3.


Subject(s)
Gangliosides/genetics , Gangliosides/metabolism , Gene Expression Regulation, Enzymologic , Sialyltransferases/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Gene Transfer Techniques , Genetic Vectors , Humans , Microscopy, Fluorescence , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...