Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 41(14): e2000218, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32596849

ABSTRACT

Flexible and lightweight pressure sensors have attracted tremendous attention as a promising component of wearable biological motion sensors and artificial electronic skins. Here, the electromechanical response of as-electrospun fiber mats composed of a commodity polymer, atactic polystyrene, which can be applied in low-cost/large-area, flexible, and lightweight pressure sensors is demonstrated. The fiber mat demonstrates a significantly high apparent converse piezoelectric constant of >30 000 pm V-1 under static measurement and ≈13 000 pm V-1 even at a high frequency of 1 kHz. The first theoretical model to explain the unique electromechanical response is constructed, which reveals that the softness and moderate charge of the fiber mat are the reasons for the significantly high electromechanical response. Further, apparent piezoelectric constants obtained by direct measurement are lower than those obtained by the converse measurement, which is attributed to the densification and hardening of the fiber mat due to prepressure applied in direct measurement. These findings are likely to serve as a milestone for the development of large-area, flexible, and lightweight pressure sensors at low cost, as well as highly movable actuators like optical modulators without a substantial mechanical load.


Subject(s)
Polystyrenes , Skin, Artificial , Models, Theoretical , Polymers
2.
ACS Omega ; 5(22): 12692-12697, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32548452

ABSTRACT

A study of the electrical properties of metallic nanowires requires a clear analysis of conductive networks. In this study, we demonstrated that the conducting networks of Ag nanowires (AgNW) could be visually observed by examination of the voltage contrast of the scanning electron microscopy (SEM) images, which was caused by the differences in the degrees of charging of AgNWs. When AgNWs dispersed on a quartz glass were irradiated by primary electrons, the substrate became negatively charged. This induced positive charges on the AgNWs in contact with the electrodes. As a result, AgNW networks connected to electrodes appeared dark in the SEM image, while the isolated AgNWs appeared brighter. By varying the acceleration voltage of the primary electrons, the extent of charging could be controlled, which, in turn, enabled the observation of the voltage contrast of AgNWs. Using the voltage contrast of SEM images, we could visually distinguish the AgNW networks having an electrical connection with the electrode from the ones that were not connected to the electrode.

3.
Molecules ; 25(3)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979354

ABSTRACT

Organic nonvolatile transistor memory with synthetic polypeptide derivatives as dielectric was fabricated by a solution process. When only poly (γ-benzyl-l-glutamate) (PBLG) was used as dielectric, the device did not show obvious hysteresis in transfer curves. However, PBLG blended with PMMA led to a remarkable increase in memory window up to 20 V. The device performance was observed to remarkably depend on the blend ratio. This study suggests the crystal structure and the molecular alignment significantly affect the electrical performance in transistor-type memory devices, thereby provides an alternative to prepare nonvolatile memory with polymer dielectrics.


Subject(s)
Equipment Design/methods , Nanostructures/chemistry , Peptides/chemistry , Polyglutamic Acid/analogs & derivatives , Polymers/chemistry , Polymethyl Methacrylate/chemistry , Transistors, Electronic , Circular Dichroism , Computer Storage Devices , Electricity , Microscopy, Atomic Force , Polyglutamic Acid/chemistry , Surface Properties , X-Ray Diffraction
4.
Nanomaterials (Basel) ; 8(8)2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30110978

ABSTRACT

Copper nitride particles have a low decomposition temperature, they absorb light, and are oxidation-resistant, making them potentially useful for the development of novel wiring inks for printing circuit boards by means of intense pulsed light (IPL) sintering at low-energy. Here, we compared the thermal decomposition and light absorption of copper materials, including copper nitride (Cu3N), copper(I) oxide (Cu2O), or copper(II) oxide (CuO). Among the copper compounds examined, copper nitride had the second highest light absorbency and lowest decomposition temperature; therefore, we concluded that copper nitride was the most suitable material for producing a wiring ink that is sintered by means of IPL irradiation. Wiring inks containing copper nitride were compared with those of wiring inks containing copper nitride, copper(I) oxide, or copper(II) oxide, and copper conversion rate and sheet resistance were also determined. Under low-energy irradiation (8.3 J cm-2), copper nitride was converted to copper at the highest rate among the copper materials, and provided a sheet resistance of 0.506 Ω sq-1, indicating that copper nitride is indeed a candidate material for development as a wiring ink for low-energy intense pulsed light sintering-based printed circuit board production processes.

5.
J Nanosci Nanotechnol ; 16(4): 3343-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27451629

ABSTRACT

A poly-DL-lactide (PLA) fiber film was prepared using the electrospinning method. This film consisted of randomly oriented PLA nanofibers. Consequently, it had sponge-like structure and was quite soft compared to PLA films prepared by spin coating. The average diameter of the fibers and the density of the film were 730 nm and 20%, respectively. By applying a voltage, the PLA film was subjected to electric-field-induced strain: expansion and compression in the thickness direction. When a voltage of -200 V was applied to the film, its thickness shrank from 13.5 µm to 10.0 µm (a 26% reduction). Electric-field-induced strain can occur via two different mechanisms: The first is electrostrictive behavior. That. is, in a highly electric field region, a change of film thickness occurs (compression only) from the electrostatic force between electrodes. The second mechanism is piezoelectric-like behavior that occurs in racemic PLA, wherein a PLA nanofiber is expanded and compressed by applying positive and negative voltage. Such piezoelectric-like behavior was not observed in spin-coated PLA films.

SELECTION OF CITATIONS
SEARCH DETAIL
...