Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Phytomedicine ; 130: 155760, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38797029

ABSTRACT

BACKGROUND: The Xin-yi-san herbal decoction (XYS) is commonly used to treat patients with allergic rhinitis in Taiwan. Theophylline is primarily oxidized with high affinity by human cytochrome P450 (CYP)1A2, and has a narrow therapeutic index. PURPOSE: This study aimed to investigate the inhibition of human CYP1A2-catalyzed theophylline oxidation (THO) by XYS and its adverse effects in patients. METHODS: Human CYPs were studied in recombinant enzyme systems. The influence of concurrent XYS usage in theophylline-treated patients was retrospectively analyzed. RESULTS: Among the major human hepatic and respiratory CYPs, XYS inhibitors preferentially inhibited CYP1A2 activity, which determined the elimination and side effects of theophylline. Among the herbal components of XYS decoction, Angelicae Dahuricae Radix contained potent THO inhibitors. Furanocoumarin imperatorin was abundant in XYS and Angelicae Dahuricae Radix decoctions, and non-competitively inhibited THO activity with Ki values of 77‒84 nM, higher than those (20‒52 nM) of fluvoxamine, which clinically interacted with theophylline. Compared with imperatorin, the intestinal bacterial metabolite xanthotoxol caused weaker THO inhibition. Consistent with the potency of the inhibitory effects, the docking analysis generated Gold fitness values in the order-fluvoxamine > imperatorin > xanthotoxol. During 2017‒2018, 2.6 % of 201,093 theophylline users consumed XYS. After inverse probability weighting, XYS users had a higher occurrence of undesired effects than non-XYS users; in particular, there was an approximately two-fold higher occurrence of headaches (odds ratio (OR), 2.14; 95 % confidence interval (CI), 1.99‒2.30; p < 0.001) and tachycardia (OR, 1.83; 95 % CI, 1.21‒2.77; p < 0.05). The incidence of irregular heartbeats increased (OR, 1.36; 95 % CI, 1.07‒1.72; p < 0.05) only in the theophylline users who took a high cumulative dose (≥ 24 g) of XYS. However, the mortality in theophylline users concurrently taking XYS was lower than that in non-XYS users (OR, 0.24; 95 % CI, 0.14‒0.40; p < 0.001). CONCLUSION: XYS contains human CYP1A2 inhibitors, and undesirable effects were observed in patients receiving both theophylline and XYS. Further human studies are essential to reduce mortality and to adjust the dosage of theophylline in XYS users.


Subject(s)
Angelica , Cytochrome P-450 CYP1A2 Inhibitors , Cytochrome P-450 CYP1A2 , Drugs, Chinese Herbal , Furocoumarins , Theophylline , Theophylline/pharmacology , Humans , Drugs, Chinese Herbal/pharmacology , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2 Inhibitors/pharmacology , Angelica/chemistry , Furocoumarins/pharmacology , Male , Herb-Drug Interactions , Retrospective Studies , Female , Taiwan , Middle Aged , Adult , Oxidation-Reduction , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/chemically induced
2.
J Pharm Pharmacol ; 75(9): 1225-1236, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37364866

ABSTRACT

OBJECTIVES: Theophylline is a bronchodilator with a narrow therapeutic index and primarily metabolised by cytochrome P450 (CYP) 1A2. Xin-yi-san (XYS) is a herbal formula frequently used to ameliorate nasal inflammation. This study aimed to investigate the effects of XYS and its ingredient, imperatorin, on theophylline pharmacokinetics in rats. METHODS: The kinetics of XYS- and imperatorin-mediated inhibition of theophylline oxidation were determined. Pharmacokinetics of theophylline were analysed. Comparisons were made with the CYP1A2 inhibitor, fluvoxamine. KEY FINDINGS: XYS extract and its ingredient, imperatorin, non-competitively inhibited theophylline oxidation. Fluvoxamine (50 and 100 mg/kg) and XYS (0.5 and 0.9 g/kg) significantly prolonged the time to reach the maximum plasma concentration (tmax) of theophylline by 3-10 fold. In a dose-dependent manner, XYS and imperatorin (0.1-10 mg/kg) treatments significantly decreased theophylline clearance by 27-33% and 19-56%, respectively. XYS (0.9 g/kg) and imperatorin (10 mg/kg) significantly prolonged theophylline elimination half-life by 29% and 142%, respectively. Compared with the increase (51-112%) in the area under curve (AUC) of theophylline by fluvoxamine, the increase (27-57%) by XYS was moderate. CONCLUSIONS: XYS decreased theophylline clearance primarily through imperatorin-suppressed theophylline oxidation. Further human studies are essential for the dose adjustment in the co-medication regimen.


Subject(s)
Herb-Drug Interactions , Theophylline , Rats , Humans , Animals , Theophylline/pharmacokinetics , Fluvoxamine/pharmacology , Bronchodilator Agents/pharmacokinetics
3.
Sci Rep ; 12(1): 15004, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056034

ABSTRACT

To distinguish the influences of fuel type and truck speed on chemical composition and sub-toxic effects of particulates (PM2.5) from engine emissions, biomarkers-interleukin-6 (IL-6), cytochrome P450 (CYP) 1A1, heme oxygenase (HO)-1, and NADPH-quinone oxidoreductase (NQO)-1-were studied in A549 human lung cells. Fuel type and truck speed preferentially affected the quantity and ion/polycyclic aromatic hydrocarbon (PAH) composition of PM2.5, respectively. Under idling operation, phenanthrene was the most abundant PAH. At high speed, more than 50% of the PAHs had high molecular weight (HMW), of which benzo[a]pyrene (B[a]P), benzo[ghi]perylene (B[ghi]P), and indeno[1,2,3-cd]pyrene (I[cd]P) were the main PAHs. B[a]P, B[ghi]P, and I[cd]P caused potent induction of IL-6, CYP1A1, and NQO-1, whereas phenanthrene mildly induced CYP1A1. Based on the PAH-mediated induction, the predicted increases in biomarkers were positively correlated with the measured increases. HMW-PAHs contribute to the biomarker induction by PM2.5, at high speed, which was reduced by co-exposure to epigallocatechin-3-gallate.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Catechin/analogs & derivatives , Cytochrome P-450 CYP1A1 , Dust , Humans , Interleukin-6/pharmacology , Lung , Motor Vehicles , Phenanthrenes/pharmacology , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity
4.
J Food Drug Anal ; 30(1): 111-127, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35647719

ABSTRACT

Herbal interactions with nifedipine/felodipine through cytochrome P450 (CYP) 3A inhibition is significant in humans. Shengmai-San (SMS), a three-herbal formula of Chinese medicine, is commonly prescribed in Asia populations for cardiovascular disorders. This study aimed to elucidate the impact of SMS on nifedipine/felodipine treatment by the findings from rat pharmacokinetic study of nifedipine to the retrospective cohort study of patients with hypertension. The 3-week SMS treatment increased the systemic exposure to nifedipine by nearly two-fold and decreased nifedipine clearance by 39% in rats. Among the ingredients of SMS component herbs, schisandrin B, schisantherin A, and methylophiopogonanone A, inhibited the nifedipine oxidation (NFO) activities of rat hepatic and intestinal microsomes, as well as human CYP3A4. Methylophiopogonanone A was identified as a time-dependent inhibitor of CYP3A4. After 1:5 propensity score matching, 4,894 patients with nifedipine/felodipine use were analyzed. In patients receiving nifedipine/felodipine, the subgroup with concurrent SMS treatment had a higher incidence of headache (92.70 per 1,000 personyears) than the subgroup without SMS treatment (51.10 per 1,000 person-years). There was a positive association between headache incidence and cumulative doses of SMS (1-60 g SMS: hazard ratio (HR): 1.39; 95% confidence interval (CI): 1.11-1.74; >60 g SMS: HR: 1.97; 95% CI: 1.62-2.39; p < 0.0001). However, patients who had higher cumulative SMS doses had a lower risk of all-cause mortality (1-60 g SMS: HR: 0.67; 95% CI: 0.47-0.94; >60 g SMS: HR: 0.54; 95% CI: 0.37-0.79; p = 0.001). Results demonstrated increased rat plasma nifedipine levels after 3-week SMS treatment and increased headache incidence should be noted in nifedipine/felodipine-treated patients with prolonged SMS administration.


Subject(s)
Cytochrome P-450 CYP3A , Nifedipine , Animals , Cytochrome P-450 CYP3A/genetics , Drug Combinations , Drugs, Chinese Herbal , Felodipine , Headache , Humans , Nifedipine/pharmacokinetics , Rats , Retrospective Studies
5.
J Ethnopharmacol ; 271: 113914, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33571617

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shengmai San (SMS) has been commonly used as a traditional Chinese medicine for the treatment of cardiovascular disorders, of which drug interactions need to be assessed for the safety concern. There is little evidence for the alterations of hepatic and intestinal drug-metabolizing enzymes after repeated SMS treatments to assess drug interactions. AIM OF THE STUDY: The studies aim to illustrate the effects of repeated treatments with SMS on cytochrome P450s (CYPs), reduced nicotinamide adenine dinucleotide (phosphate)-quinone oxidoreductase (NQO), uridine diphosphate-glucuronosyltransferase (UGT), and glutathione S-transferase (GST) using in vivo rat model. MATERIALS AND METHODS: The SMS was prepared using Schisandrae Fructus, Ginseng Radix, and Ophiopogonis Radix (OR) (1:2:2). Chromatographic analyses of decoctions were performed using ultra-performance liquid chromatography (UPLC) and LC-mass spectrometry. Sprague-Dawley rats were orally treated with the SMS and its component herbal decoctions for 2 or 3 weeks. Hepatic and intestinal enzyme activities were determined. CYP3A expression and the kinetics of intestinal nifedipine oxidation (NFO, a CYP3A marker reaction) were determined. RESULTS: Schisandrol A, schisandrin B, ginsenoside Rb1 and ophiopogonin D were identified in SMS. SMS selectively suppressed intestinal, but not hepatic, NFO activity in a dose- and time-dependent manner. Hepatic and intestinal UGT, NQO and GST activities were not affected. A 3-week SMS treatment decreased the maximal velocity of intestinal NFO by 50%, while the CYP3A protein level remained unchanged. Among SMS component herbs, the decoction of OR decreased intestinal NFO activity. CONCLUSIONS: These findings demonstrate that 3-week treatment with SMS and OR suppress intestinal, but not hepatic CYP3A function. It suggested that the potential interactions of SMS with CYP 3A drug substrates should be noticed, especially the drugs whose bioavailability depends heavily on intestinal CYP3A.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drugs, Chinese Herbal/pharmacology , Intestines/enzymology , Liver/enzymology , Animals , Biomarkers/blood , Cyclooctanes/analysis , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/analysis , Cytochrome P-450 CYP3A Inhibitors/therapeutic use , Drug Combinations , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/therapeutic use , Ginsenosides/analysis , Glucuronosyltransferase/metabolism , Glutathione Transferase/metabolism , Herb-Drug Interactions , Intestines/drug effects , Lignans/analysis , Liver/drug effects , Male , Microsomes/drug effects , Microsomes/enzymology , NAD(P)H Dehydrogenase (Quinone)/metabolism , Nifedipine/metabolism , Oxidation-Reduction/drug effects , Polycyclic Compounds/analysis , Rats, Sprague-Dawley , Saponins/chemistry , Spirostans/chemistry
7.
EBioMedicine ; 54: 102717, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32268268

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is aggressive and has a poor prognosis. Kynurenine 3-monooxygenase (KMO), a crucial kynurenine metabolic enzyme, is involved in inflammation, immune response and tumorigenesis. We aimed to study the role of KMO in TNBC. METHODS: KMO alteration and expression data from public databases were analyzed. KMO expression levels in TNBC samples were analyzed using immunohistochemistry. Knockdown of KMO in TNBC cells was achieved by RNAi and CRISPR/Cas9. KMO functions were examined by MTT, colony-forming, transwell migration/invasion, and mammosphere assays. The molecular events were analyzed by cDNA microarrays, Western blot, quantitative real-time PCR and luciferase reporter assays. Tumor growth and metastasis were detected by orthotopic xenograft and tail vein metastasis mouse models, respectively. FINDINGS: KMO was amplified and associated with worse survival in breast cancer patients. KMO expression levels were higher in TNBC tumors compared to adjacent normal mammary tissues. In vitro ectopic KMO expression increased cell growth, colony and mammosphere formation, migration, invasion as well as mesenchymal marker expression levels in TNBC cells. In addition, KMO increased pluripotent gene expression levels and promoter activities in vitro. Mechanistically, KMO was associated with ß-catenin and prevented ß-catenin degradation, thereby enhancing the transcription of pluripotent genes. KMO knockdown suppressed tumor growth and the expression levels of ß-catenin, CD44 and Nanog. Furthermore, mutant KMO (known with suppressed enzymatic activity) could still promote TNBC cell migration/invasion. Importantly, mice bearing CRISPR KMO-knockdown TNBC tumors showed decreased lung metastasis and prolonged survival. INTERPRETATION: KMO regulates pluripotent genes via ß-catenin and plays an oncogenic role in TNBC progression.


Subject(s)
Gene Expression Regulation, Neoplastic , Kynurenine 3-Monooxygenase/metabolism , Triple Negative Breast Neoplasms/genetics , beta Catenin/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Female , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Kynurenine 3-Monooxygenase/genetics , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Up-Regulation , beta Catenin/genetics
8.
J Steroid Biochem Mol Biol ; 197: 105566, 2020 03.
Article in English | MEDLINE | ID: mdl-31874216

ABSTRACT

Oxygenated metabolites of cholesterol (oxysterols) have been previously demonstrated to contribute to progression of various cancers and to modulate resistance to breast cancer endocrine therapy in vitro. We measured prognostic roles of circulating levels of seven major oxysterols in the progression of luminal subtype breast carcinoma. Liquid chromatography coupled with tandem mass spectrometry was used for determination of levels of non-esterified 25-hydroxycholesterol, 27-hydroxycholesterol, 7α-hydroxycholesterol, 7-ketocholesterol, cholesterol-5α,6α-epoxide, cholesterol-5ß,6ß-epoxide, and cholestane-3ß,5α,6ß-triol in plasma samples collected from patients (n = 58) before surgical removal of tumors. Oxysterol levels were then associated with clinical data of patients. All oxysterols except cholesterol-5α,6α-epoxide were detected in patient plasma samples. Circulating levels of 7α-hydroxycholesterol and 27-hydroxycholesterol were significantly lower in patients with small tumors (pT1) and cholesterol-5ß,6ß-epoxide and cholestane-3ß,5α,6ß-triol were lower in patients with stage IA disease compared to larger tumors or more advanced stages. Patients with higher than median cholestane-3ß,5α,6ß-triol levels had significantly worse disease-free survival than patients with lower levels (p = 0.037 for all patients and p = 0.015 for subgroup treated only with tamoxifen). In conclusion, this study shows, for the first time, that circulating levels of oxysterols, especially cholestane-3ß,5α,6ß-triol, may have prognostic roles in patients with luminal subtype breast cancer.


Subject(s)
Biomarkers, Tumor/analysis , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Oxysterols/blood , Breast Neoplasms/blood , Carcinoma, Ductal, Breast/blood , Female , Follow-Up Studies , Humans , Middle Aged , Neoplasm Invasiveness , Prognosis , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Survival Rate
9.
Article in English | MEDLINE | ID: mdl-31835687

ABSTRACT

Fine particulate matter (PM2.5) from different sources with different components have different health impact. In this research in Taiwan, composition and cytotoxicity of PM2.5 from long-range transport event (LRT), traffic activity, and outdoor cooking at night market were studied. The PM2.5 mass concentrations were 39.0 µg/m3 during LRT, 42.9 µg/m3 at traffic area, and 28.3 µg/m3 at the night market. Traffic area had highest concentrations of PCDD/Fs (46.9 fg I-TEQ/m3) when highest PAH concentrations of 3.57 BaPeq-ng/m3 were found at night market area. One quarter of PM2.5 mass at LRT and night market was constituted by water-soluble ion (26.02-28.93%). Road dust (represented by high concentration of Al and Ca) was the main contributor for metal element at traffic station whereas presence of natural salt (Na and Cl elements) was a marker of LRT and cooking activities. Cell viability reduced 9% after exposure to organic extracts of 0.316 µg of PM2.5 from LRT and night market samples. 150% elevation of ROS production was observed after exposure with organic compound of night market samples at the dose equivalent to 10.0 µg PM2.5. Organic extracts from night market induced positive genotoxicity in umu test (at a dose of 20.0 µg PM2.5).


Subject(s)
Air Pollutants/toxicity , Air Pollution/adverse effects , Cell Survival/drug effects , Particulate Matter/toxicity , Air Pollutants/analysis , Air Pollutants/chemistry , Air Pollution/analysis , Environmental Monitoring , Humans , Lung/cytology , Particle Size , Particulate Matter/analysis , Particulate Matter/chemistry , Taiwan , Toxicity Tests/methods
10.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Article in English | MEDLINE | ID: mdl-31527026

ABSTRACT

Change of ertapenem dosage from 500 mg daily to thrice weekly after each hemodialysis session can maintain the plasma concentration above 2 mg/L, and be practical in hemodialysis patients.

12.
Toxicol Appl Pharmacol ; 378: 114619, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31195002

ABSTRACT

Breast cancer patients with high cholesterol biosynthesis signature had poorer therapeutic outcome. Cytochrome P450 (CYP) 2D6 is crucial in the oxidation of tamoxifen to generate active metabolites, 4-hydroxytamoxifen and endoxifen. CYP2D6 variants with C100T substitution encode null or poor functional proteins. This study aims to examine the association of C100T genotypes and serum lipid levels with plasma drug levels in patients. Plasma tamoxifen concentration was positively associated with serum triglyceride concentration, adjusting for age and C100T genotype. Overweight (body mass index >24.0) patients with high serum cholesterol (≥200 mg/dL) had increased risks of ineffective endoxifen levels (<5.97 ng/mL). Compared to the low-cholesterol group, the high-cholesterol group had a lower 4-hydroxytamoxifen or endoxifen level in T/T carriers. In T/T carriers, the high-cholesterol group had an increased risk of an ineffective endoxifen level. Metastasis, hot flash/flushing, and high alanine transaminase did not relate to plasma 4-hydroxytamoxifen or endoxifen levels. Results indicate that C100T and high serum cholesterol are risk factors of ineffective endoxifen levels in Taiwanese breast cancer patients. These findings warrant further studies of a large hypercholesterolemic population to examine the outcome of increased doses of tamoxifen.


Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/metabolism , Cholesterol/blood , Cytochrome P-450 CYP2D6/metabolism , Tamoxifen/analogs & derivatives , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Hormonal/blood , Female , Genotype , Humans , Middle Aged , Phenotype , Tamoxifen/blood
13.
J Food Drug Anal ; 27(1): 284-294, 2019 01.
Article in English | MEDLINE | ID: mdl-30648582

ABSTRACT

The traditional Chinese herbal formula Shenmai-Yin (SY) and nifedipine have both been used to treat patients with cardiovascular disorders. Nifedipine is primarily oxidized by cytochrome P450 (CYP) 3A. The oxidation and pharmacokinetics of nifedipine were studied in rats in vitro and in vivo to illustrate the interaction of SY with nifedipine. Schisandrol A, schisandrin A and schisandrin B were identified as the main lignans in SY. In the study in vitro, the ethanolic extract of SY was used due to the solubility and the extract inhibited nifedipine oxidation (NFO) activity in a time-dependent manner. Among lignans, schisandrin B caused the most potent inhibition. According to the time-dependent inhibition behavior, rats were treated with SY 1 h before nifedipine administration. After oral treatment with 1.9 g/kg SY, nifedipine clearance decreased by 34% and half-life increased by 142%. SY treatment decreased hepatic NFO activity by 49%. Compared to the change caused by ketoconazole, the SY-mediated reduction of nifedipine clearance was moderate. These findings demonstrate that SY causes a time-dependent inhibition of NFO and schisandrin B contributes to the inhibition. The decreased nifedipine clearance by SY in rats warrants further human study to examine the clinical impact of this decrease.


Subject(s)
Drugs, Chinese Herbal/administration & dosage , Nifedipine/pharmacokinetics , Animals , Cyclooctanes/administration & dosage , Cyclooctanes/analysis , Cytochrome P-450 CYP3A/metabolism , Drug Interactions , Drugs, Chinese Herbal/analysis , Humans , Lignans/administration & dosage , Lignans/analysis , Male , Nifedipine/administration & dosage , Polycyclic Compounds/administration & dosage , Polycyclic Compounds/analysis , Rats , Rats, Sprague-Dawley
14.
J Food Drug Anal ; 26(1): 422-431, 2018 01.
Article in English | MEDLINE | ID: mdl-29389584

ABSTRACT

Hypericum perforatum [St. John's wort (SJW)] is known to cause a drug interaction with the substrates of cytochrome P450 (P450, CYP) isoforms, mainly CYP3A. This study aims to determine the dose response and time course of the effects of SJW extract on P450s, UDP-glucuronosyltransferase (UGT), glutathione S-transferase (GST), and NAD(P)H-quinone oxidoreductase (NQO) in mice. The oral administration of SJW extract to male mice at 0.6 g/kg/d for 21 days increased hepatic oxidation activity toward a Cyp3a substrate nifedipine. By extending the SJW treatment to 28 days, hepatic nifedipine oxidation (NFO) and warfarin 7-hydroxylation (WOH) (Cyp2c) activities were increased by 95% and 34%, respectively. Immunoblot analysis of liver microsomal proteins revealed that the Cyp2c protein level was elevated by the 28-day treatment. However, the liver microsomal activities of the oxidation of the respective substrates of Cyp1a, Cyp2a, Cyp2b, Cyp2d, and Cyp2e1 remained unchanged. In the kidney, SJW increased the NFO, but not the WOH activity. The extended 28-day treatment did not alter mouse hepatic and renal UGT, GST, and NQO activities. These findings demonstrate that SJW stimulates hepatic and renal Cyp3a activity and hepatic Cyp2c activity and expression. The induction of hepatic Cyp2c requires repeated treatment for a period longer than the initial induction of Cyp3a.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Glucuronosyltransferase/metabolism , Glutathione Transferase/metabolism , Hypericum/chemistry , NAD(P)H Dehydrogenase (Quinone)/metabolism , NAD/metabolism , Plant Extracts/pharmacology , Animals , Cytochrome P-450 CYP3A/metabolism , Dose-Response Relationship, Drug , Drug Interactions , Enzyme Activation , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacokinetics
16.
Molecules ; 22(11)2017 Oct 28.
Article in English | MEDLINE | ID: mdl-29143794

ABSTRACT

Berberine and the methylenedioxy ring-opening derivatives palmatine and jatrorrhizine are active ingredients in immunomodulatory plants, such as goldenseal. This study aimed to illustrate the effects of protoberberines on aryl hydrocarbon receptor (AhR) activation and cytochrome P450 (CYP) 1 in the estrogen receptor (ER)α(+) MCF-7 breast cancer cells. Among protoberberines at non-cytotoxic concentrations (≤10 µM), berberine had the most potent and statistically significant effects on AhR activation and CYP1A1/1A2/1B1 mRNA induction. The 24-h exposure to 10 µM berberine did not change CYP1A1 mRNA stability, protein level and function. Berberine significantly increased micro RNA (miR)-21-3p by 36% and the transfection of an inhibitor of miR-21-3p restored the induction of CYP1A1 protein with a 50% increase. These findings demonstrate that the ring opening of the methylenedioxyl moiety in berberine decreased AhR activation in MCF-7 cells. While CYP1A1 mRNA was elevated, berberine-induced miR-21-3p suppressed the increase of functional CYP1A1 protein expression.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Berberine/pharmacology , Breast Neoplasms/metabolism , Cytochrome P-450 CYP1A1/genetics , MicroRNAs/genetics , Receptors, Aryl Hydrocarbon/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Berberine/analogs & derivatives , Berberine/chemistry , Berberine Alkaloids/chemistry , Berberine Alkaloids/pharmacology , Breast Neoplasms/genetics , Cytochrome P-450 CYP1A1/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Molecular Structure , Receptors, Aryl Hydrocarbon/genetics
17.
Oncotarget ; 8(39): 66033-66050, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-29029490

ABSTRACT

Hypercholesterolemia is one of the risk factors for poor outcome in breast cancer therapy. To elucidate the influence of the main circulating oxysterols, cholesterol oxidation products, on the cell-killing effect of doxorubicin, cells were exposed to oxysterols at a subtoxic concentration. When cells were exposed to oxysterols in fetal bovine serum-supplemented medium, 7-ketocholesterol (7-KC), but not 27-hydroxycholesterol (27-HC), decreased the cytotoxicity of doxorubicin in MCF-7 (high estrogen receptor (ER)α/ERß ratio) cells and the decreased cytotoxicity was restored by the P-glycoprotein inhibitor verapamil. 7-KC stimulated the efflux function of P-glycoprotein and reduced intracellular doxorubicin accumulation in MCF-7 but not in ERα(-) MDA-MB-231 and the resistant MCF-7/ADR cells. In MCF-7 cells, 7-KC increased the mRNA and protein levels of P-glycoprotein. The 7-KC-suppressed doxorubicin accumulation was restored by the fluvestrant and ERα knockdown. In a yeast reporter assay, the ERα activation by 7-KC was more potent than 27-HC. 7-KC, but not 27-HC, stimulated the expression of an ER target, Trefoil factor 1 in MCF-7 cells. When charcoal-stripped fetal bovine serum was used, both 7-KC and 27-HC induced Trefoil factor 1 expression and reduced doxorubicin accumulation in MCF-7 cells. 7-KC-reduced doxorubicin accumulation could be reversed by inhibitors of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin (mTOR). These findings demonstrate that 7-KC decreases the cytotoxicity of doxorubicin through the up-regulation of P-glycoprotein in an ERα- and mTOR-dependent pathway. The 7-KC- and 27-HC-elicited estrogenic effects are crucial in the P-glycoprotein induction in breast cancer cells.

18.
J Med Chem ; 60(9): 4062-4073, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28459572

ABSTRACT

The drugs currently used to treat Alzheimer's disease (AD) are limited in the benefits they confer, and no medication has been clearly proven to cure or delay the progression of AD. Most candidate AD drugs are meant to reduce the production, aggregation, and toxicity of amyloid ß (Aß) or to promote Aß clearance. Herein, we demonstrate the efficient synthesis of hydroxyl-functionalized stilbene and 2-arylbenzo[b]furan derivatives and report on the neuroprotective and anti-inflammatory effects of these phenolic compounds in vitro and in an animal model. Structure-activity relationships revealed that the presence of an acrylate group on 2-arylbenzo[b]furan confers neuroprotective and anti-inflammatory effects. Furthermore, compounds 11 and 37 in this study showed particular potential for development as disease-modifying anti-Alzheimer's drugs, based on their neuroprotective effects on neuron cells, their antineuroinflammatory effects on glial cells, and the ability to ameliorate nesting behavior in APP/PS1 mice. These results indicate that 2-arylbenzo[b]furans could be candidate compounds for the treatment of AD.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Furans/chemistry , Neuroprotective Agents/pharmacology , Stilbenes/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacokinetics , Humans , Mice , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacokinetics
19.
Drug Metab Pharmacokinet ; 32(1): 85-91, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28111103

ABSTRACT

The herbal remedy Shu-Jing-Hwo-Shiee-Tang (SJHST) has been used in traditional Chinese medical care for the treatment of osteoarthritis. This study aims to examine the influence of SJHST on the oxidation and anticoagulation effect of warfarin in male rats. In three SJHST preparations (S1-S3), hesperidin, gentiopicrin, and paeoniflorin were identified as chemical marker ingredients. The inhibition of liver microsomal warfarin 7-hydroxylation (WOH) activity by 50% methanolic extracts of SJHST was potentiated by ß-glucosidase pretreatment, but not by NADPH-fortified microsomal preincubation. Among various ingredients and their ß-glucosidase-hydrolyzed products, hesperetin caused the most potent inhibition of WOH. Oral administration of S2 to rats at 2 h after warfarin treatment (WS22-h post), but not co-treatment (WS2co), decreased warfarin clearance and increased the maximal plasma concentration and the area under the curve (AUC0-t, AUC0-∞) of plasma concentration versus time of warfarin administration. S2 and S3 did not change the coagulation parameters. At 24 h after warfarin administration, the WS22-h post and WS32-h post groups had a prothrombin time longer than that of the warfarin group. These results demonstrate that a 2-h post-treatment of rats with SJHST caused pharmacokinetic interaction with warfarin, resulting in prothrombin time prolongation.


Subject(s)
Anticoagulants/pharmacology , Blood Coagulation/drug effects , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Prothrombin Time , Warfarin/administration & dosage , Warfarin/pharmacology , Administration, Oral , Animals , Anticoagulants/administration & dosage , Dose-Response Relationship, Drug , Drug Interactions , Drugs, Chinese Herbal/pharmacokinetics , Male , Rats , Rats, Sprague-Dawley , Warfarin/pharmacokinetics
20.
Oncotarget ; 7(45): 74132-74151, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27708226

ABSTRACT

Mitochondrial DNA mutations and defects in mitochondrial enzymes have been identified in gastric cancers, and they might contribute to cancer progression. In previous studies, mitochondrial dysfunction was induced by oligomycin-enhanced chemoresistance to cisplatin. Herein, we dissected the regulatory mechanism for mitochondrial dysfunction-enhanced cisplatin resistance in human gastric cancer cells. Repeated cisplatin treatment-induced cisplatin-resistant cells exhibited high SLC7A11 (xCT) expression, and xCT inhibitors (sulfasalazine or erastin), xCT siRNA, or a GSH synthesis inhibitor (buthionine sulphoximine, BSO) could sensitize these cells to cisplatin. Clinically, the high expression of xCT was associated with a poorer prognosis for gastric cancer patients under adjuvant chemotherapy. Moreover, we found that mitochondrial dysfunction enhanced cisplatin resistance and up-regulated xCT expression, as well as intracellular glutathione (GSH). The xCT inhibitors, siRNA against xCT or BSO decreased mitochondrial dysfunction-enhanced cisplatin resistance. We further demonstrated that the upregulation of the eIF2α-ATF4 pathway contributed to mitochondrial dysfunction-induced xCT expression, and activated eIF2α kinase GCN2, but not PERK, stimulated the eIF2α-ATF4-xCT pathway in response to mitochondrial dysfunction-increased reactive oxygen species (ROS) levels. In conclusion, our results suggested that the ROS-activated GCN2-eIF2α-ATF4-xCT pathway might contribute to mitochondrial dysfunction-enhanced cisplatin resistance and could be a potential target for gastric cancer therapy.


Subject(s)
Activating Transcription Factor 4/metabolism , Amino Acid Transport System y+/metabolism , Cisplatin/pharmacology , Mitochondria/metabolism , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Stomach Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , HEK293 Cells , Humans , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...