Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Virology ; 595: 110068, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593595

ABSTRACT

Coronavirus disease 19 is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enveloped virus with a single-stranded positive-sense ribonucleic acid (RNA) genome. The CoV non-structural protein (nsp) 1 is a multifunctional protein that undergoes translation shutoff, messenger RNA (mRNA) cleavage, and RNA binding. The C-terminal region is involved in translational shutoff and RNA cleavage. The N-terminal region of SARS-CoV-2 nsp1 is highly conserved among isolated SARS-CoV-2 variants. However, the I-004 variant, isolated during the early SARS-CoV-2 pandemic, lost eight amino acids in the nsp1 region. In this study, we showed that the eight amino acids are important for viral replication in infected interferon-incompetent cells and that the recombinant virus that lost these amino acids had low pathogenicity in the lungs of hamster models. The loss of eight amino acids-induced mutations occurred in the 5' untranslated region (UTR), suggesting that nsp1 contributes to the stability of the viral genome during replication.


Subject(s)
Genome, Viral , SARS-CoV-2 , Viral Nonstructural Proteins , Virus Replication , Animals , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , SARS-CoV-2/metabolism , Humans , Cricetinae , COVID-19/virology , Chlorocebus aethiops , RNA, Viral/genetics , RNA, Viral/metabolism , Vero Cells , Amino Acid Sequence , Mutation , Mesocricetus , 5' Untranslated Regions
2.
Microbiol Immunol ; 67(9): 413-421, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37424190

ABSTRACT

A reverse genetics system for the respiratory syncytial virus (RSV), which causes acute respiratory illness, is an effective tool for understanding the pathogenicity of RSV. To date, a method dependent on T7 RNA polymerase is commonly used for RSV. Although this method is well established and recombinant RSV is well rescued from transfected cells, the requirement for artificial supply of T7 RNA polymerase limits its application. To overcome this, we established a reverse genetics system dependent on RNA polymerase II, which is more convenient for the recovery of recombinant viruses from various cell lines. First, we identified human cell lines with high transfection efficiency in which RSV can replicate effectively. Two human cell lines, Huh-7 and 293T, permitted the propagation of recombinant green fluorescent protein-expressing RSV. Our minigenome system revealed that efficient transcription and replication of RSV occurred in both Huh-7 and 293T cells. We then confirmed that recombinant green fluorescent protein-expressing RSV was rescued in both Huh-7 and 293T cells. Furthermore, the growth capability of viruses rescued from Huh-7 and 293T cells was similar to that of recombinant RSV rescued using the conventional method. Thus, we succeeded in establishing a new reverse genetics system for RSV that is dependent on RNA polymerase II.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Green Fluorescent Proteins/genetics , Reverse Genetics , Respiratory Syncytial Virus, Human/genetics , Transfection , Virus Replication
3.
iScience ; 25(11): 105412, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36320329

ABSTRACT

Live-attenuated vaccines are generally highly effective. Here, we aimed to develop one against SARS-CoV-2, based on the identification of three types of temperature-sensitive (TS) strains with mutations in nonstructural proteins (nsp), impaired proliferation at 37°C-39°C, and the capacity to induce protective immunity in Syrian hamsters. To develop a live-attenuated vaccine, we generated a virus that combined all these TS-associated mutations (rTS-all), which showed a robust TS phenotype in vitro and high attenuation in vivo. The vaccine induced an effective cross-reactive immune response and protected hamsters against homologous or heterologous viral challenges. Importantly, rTS-all rarely reverted to the wild-type phenotype. By combining these mutations with an Omicron spike protein to construct a recombinant virus, protection against the Omicron strain was obtained. We show that immediate and effective live-attenuated vaccine candidates against SARS-CoV-2 variants may be developed using rTS-all as a backbone to incorporate the spike protein of the variants.

4.
Sci Rep ; 12(1): 20120, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418391

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Variants of concern (VOCs) such as Delta and Omicron have developed, which continue to spread the pandemic. It has been reported that these VOCs reduce vaccine efficacy and evade many neutralizing monoclonal antibodies (mAbs) that target the receptor binding domain (RBD) of the glycosylated spike (S) protein, which consists of the S1 and S2 subunits. Therefore, identification of optimal target regions is required to obtain neutralizing antibodies that can counter VOCs. Such regions have not been identified to date. We obtained 2 mAbs, NIBIC-71 and 7G7, using peripheral blood mononuclear cells derived from volunteers who recovered from COVID-19. Both mAbs had neutralizing activity against wild-type SARS-CoV-2 and Delta, but not Omicron. NIBIC-71 binds to the RBD, whereas 7G7 recognizes the N-terminal domain of the S1. In particular, 7G7 inhibited S1/S2 cleavage but not the interaction between the S protein and angiotensin-converting enzyme 2; it suppressed viral entry. Thus, the efficacy of a neutralizing mAb targeting inhibition of S1/2 cleavage was demonstrated. These results suggest that neutralizing mAbs targeting blockade of S1/S2 cleavage are likely to be cross-reactive against various VOCs.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/chemistry , Leukocytes, Mononuclear , Antibodies, Viral , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Monoclonal
5.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34625475

ABSTRACT

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and life. A useful pathological animal model accurately reflecting human pathology is needed to overcome the COVID-19 crisis. In the present study, COVID-19 cynomolgus monkey models including monkeys with underlying diseases causing severe pathogenicity such as metabolic disease and elderly monkeys were examined. Cynomolgus macaques with various clinical conditions were intranasally and/or intratracheally inoculated with SARS-CoV-2. Infection with SARS-CoV-2 was found in mucosal swab samples, and a higher level and longer period of viral RNA was detected in elderly monkeys than in young monkeys. Pneumonia was confirmed in all of the monkeys by computed tomography images. When monkeys were readministrated SARS-CoV-2 at 56 d or later after initial infection all of the animals showed inflammatory responses without virus detection in swab samples. Surprisingly, in elderly monkeys reinfection showed transient severe pneumonia with increased levels of various serum cytokines and chemokines compared with those in primary infection. The results of this study indicated that the COVID-19 cynomolgus monkey model reflects the pathophysiology of humans and would be useful for elucidating the pathophysiology and developing therapeutic agents and vaccines.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Macaca fascicularis/immunology , Primate Diseases/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung/diagnostic imaging , Lung/immunology , Lung/virology , Macaca fascicularis/virology , Male , Primate Diseases/virology , SARS-CoV-2/physiology , Tomography, X-Ray Computed/methods , Virus Shedding/immunology , Virus Shedding/physiology
6.
J Biol Chem ; 297(1): 100891, 2021 07.
Article in English | MEDLINE | ID: mdl-34147496

ABSTRACT

Regulation of cellular proliferation and quiescence is a central issue in biology that has been studied using model unicellular eukaryotes, such as the fission yeast Schizosaccharomyces pombe. We previously reported that the ubiquitin/proteasome pathway and autophagy are essential to maintain quiescence induced by nitrogen deprivation in S. pombe; however, specific ubiquitin ligases that maintain quiescence are not fully understood. Here we investigated the SPX-RING-type ubiquitin ligase Pqr1, identified as required for quiescence in a genetic screen. Pqr1 is found to be crucial for vacuolar proteolysis, the final step of autophagy, through proper regulation of phosphate and its polymer polyphosphate. Pqr1 restricts phosphate uptake into the cell through ubiquitination and subsequent degradation of phosphate transporters on plasma membranes. We hypothesized that Pqr1 may act as the central regulator for phosphate control in S. pombe, through the function of the SPX domain involved in phosphate sensing. Deletion of pqr1+ resulted in hyperaccumulation of intracellular phosphate and polyphosphate and in improper autophagy-dependent proteolysis under conditions of nitrogen starvation. Polyphosphate hyperaccumulation in pqr1+-deficient cells was mediated by the polyphosphate synthase VTC complex in vacuoles. Simultaneous deletion of VTC complex subunits rescued Pqr1 mutant phenotypes, including defects in proteolysis and loss of viability during quiescence. We conclude that excess polyphosphate may interfere with proteolysis in vacuoles by mechanisms that as yet remain unknown. The present results demonstrate a connection between polyphosphate metabolism and vacuolar functions for proper autophagy-dependent proteolysis, and we propose that polyphosphate homeostasis contributes to maintenance of cellular viability during quiescence.


Subject(s)
Polyphosphates/metabolism , Proteolysis , Vacuoles/metabolism , Autophagy , Phosphate Transport Proteins/metabolism , Protein Domains , Schizosaccharomyces , Ubiquitination , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
7.
Food Funct ; 5(9): 2309-16, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25066255

ABSTRACT

'Suioh', a sweet potato (Ipomoea batatas L.) cultivar developed in Japan, has edible leaves and stems. The sweet potato leaves contain polyphenols such as caffeoylquinic acid (CQA) derivatives. It has multiple biological functions and may help to regulate the blood glucose concentration. In this study, we first examined whether sweet potato leaf extract powder (SP) attenuated hyperglycaemia in type 2 diabetic mice. Administration of dietary SP for 5 weeks significantly lowered glycaemia in type 2 diabetic mice. Second, we conducted in vitro experiments, and found that SP and CQA derivatives significantly enhanced glucagon-like peptide-1 (GLP-1) secretion. Third, pre-administration of SP significantly stimulated GLP-1 secretion and was accompanied by enhanced insulin secretion in rats, which resulted in a reduced glycaemic response after glucose injection. These results indicate that oral SP attenuates postprandial hyperglycaemia, possibly through enhancement of GLP-1 secretion.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/metabolism , Hyperglycemia/drug therapy , Ipomoea batatas/chemistry , Plant Extracts/administration & dosage , Animals , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Humans , Hyperglycemia/metabolism , Insulin/metabolism , Male , Mice , Plant Leaves/chemistry , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects
8.
Article in English | MEDLINE | ID: mdl-24348688

ABSTRACT

Barley (Hordeum vulgare L.) is a well-known cereal plant. Young barley leaf is consumed as a popular green-colored drink, which is named "Aojiru" in Japan. We examined the effects of barley leaf powder (BLP) and insoluble fibers derived from BLP on postprandial blood glucose in rats and healthy Japanese volunteers. BLP and insoluble fibers derived from BLP suppressed the increment of postprandial blood glucose levels in rats (P < 0.01), and increased the viscosity of their digesta. The insoluble fibers present in BLP might play a role in controlling blood glucose level by increasing digesta viscosity. In human, BLP suppressed the increment of postprandial blood glucose level only in those which exhibited higher blood glucose levels after meals (P < 0.01). BLP might suppress the increment of postprandial blood glucose level by increasing digesta viscosity in both of rats and humans who require blood glucose monitoring.

9.
Chemistry ; 14(34): 10808-15, 2008.
Article in English | MEDLINE | ID: mdl-18942699

ABSTRACT

From a library of glyco-lipid mimics with muconic amide as the spacer, we found that 1, a glyco-lipid that has N-acetyl glucosamine and methyl cyclohexyl groups as its hydrophilic head and hydrophobic tails, respectively, formed a stable hydrogel (0.05 wt %) through hierarchical self-assembly of the lipid molecules into supramolecular nanofibers. The formation of the supramolecular hydrogel was verified by rheological measurements, and the supramolecular nanofiber was characterized as the structural element by transmission electron microscopy and atomic force microscopy observations. Absorption and circular dichroism spectroscopic measurements revealed that the muconic amide moieties of 1 are arranged in a helical, stacked fashion in the self-assembled nanofibers. Moreover, we unexpectedly found that the homogeneous distribution of the supramolecular nanofibers of 1 was greatly facilitated by the addition of polystyrene nanobeads (100-500 nm in diameter), as evaluated by confocal laser scanning microscopic observations. It is interesting that the obtained supramolecular hybrid matrix can efficiently encapsulate and distribute live Jurkat cells in three dimensions under physiological conditions. This supramolecular hybrid matrix is intriguing as a unique biomaterial.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Macromolecular Substances/chemistry , Nanoparticles/chemistry , Amides/chemistry , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemical synthesis , Jurkat Cells , Macromolecular Substances/chemical synthesis , Microscopy, Confocal , Molecular Structure , Particle Size , Polymers/chemistry , Rheology , Surface Properties
10.
Chemistry ; 14(13): 3977-86, 2008.
Article in English | MEDLINE | ID: mdl-18335444

ABSTRACT

In a focused library of glycolipid-based hydrogelators bearing fumaric amide as a trans-cis photoswitching module, several new photoresponsive supramolecular hydrogelators were discovered, the gel-sol/sol-gel transition of which was pseudo-reversibly induced by light. Studying the optimal hydrogel by NMR spectroscopy and various microscopy techniques showed that the trans-cis photoisomerization of the double bond of the fumaric amide unit effectively caused assembly or disassembly of the self-assembled supramolecular fibers to yield the macroscopic hydrogel or the corresponding sol, respectively. The entanglement of the supramolecular fibers produced nanomeshes, the void space of which was roughly evaluated to be 250 nm based on confocal laser scanning microscopy observations of the size-dependent Brownian motion of nanobeads embedded in the supramolecular hydrogel. It was clearly shown that such nanomeshes become a physical obstacle that captures submicro- to micrometer-sized substrates such as beads or bacteria. By exploiting the photoresponsive property of the supramolecular nanomeshes, we succeeded in off/on switching of bacterial movement and rotary motion of bead-tethered F(1)-ATPase, a biomolecular motor protein, in the supramolecular hydrogel. Furthermore, by using the photolithographic technique, gel-sol photopatterning was successfully conducted to produce sol spots within the gel matrix. The fabricated gel-sol pattern not only allowed regulation of bacterial motility in a limited area, but also off/on switching of F1-ATPase rotary motion at the single-molecule level. These results demonstrated that the photoresponsive supramolecular hydrogel and the resulting nanomeshes may provide unique biomaterials for the spatiotemporal manipulation of various biomolecules and live bacteria.


Subject(s)
Biocompatible Materials/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Phase Transition , Escherichia coli/cytology , Glycolipids/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Structure , Nanostructures/chemistry , Photochemistry , Proton-Translocating ATPases/metabolism , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...