Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4071, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778078

ABSTRACT

Adaptive behavior requires integrating prior knowledge of action outcomes and sensory evidence for making decisions while maintaining prior knowledge for future actions. As outcome- and sensory-based decisions are often tested separately, it is unclear how these processes are integrated in the brain. In a tone frequency discrimination task with two sound durations and asymmetric reward blocks, we found that neurons in the medial prefrontal cortex of male mice represented the additive combination of prior reward expectations and choices. The sensory inputs and choices were selectively decoded from the auditory cortex irrespective of reward priors and the secondary motor cortex, respectively, suggesting localized computations of task variables are required within single trials. In contrast, all the recorded regions represented prior values that needed to be maintained across trials. We propose localized and global computations of task variables in different time scales in the cerebral cortex.


Subject(s)
Auditory Cortex , Choice Behavior , Reward , Animals , Male , Choice Behavior/physiology , Mice , Auditory Cortex/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Acoustic Stimulation , Mice, Inbred C57BL , Cerebral Cortex/physiology , Motor Cortex/physiology , Auditory Perception/physiology
2.
PLoS Genet ; 19(9): e1010637, 2023 09.
Article in English | MEDLINE | ID: mdl-37669262

ABSTRACT

The nematode Caenorhabditis elegans memorizes various external chemicals, such as ions and odorants, during feeding. Here we find that C. elegans is attracted to the monosaccharides glucose and fructose after exposure to these monosaccharides in the presence of food; however, it avoids them without conditioning. The attraction to glucose requires a gustatory neuron called ASEL. ASEL activity increases when glucose concentration decreases. Optogenetic ASEL stimulation promotes forward movements; however, after glucose conditioning, it promotes turning, suggesting that after glucose conditioning, the behavioral output of ASEL activation switches toward glucose. We previously reported that chemotaxis toward sodium ion (Na+), which is sensed by ASEL, increases after Na+ conditioning in the presence of food. Interestingly, glucose conditioning decreases Na+ chemotaxis, and conversely, Na+ conditioning decreases glucose chemotaxis, suggesting the reciprocal inhibition of learned chemotaxis to distinct chemicals. The activation of PKC-1, an nPKC ε/η ortholog, in ASEL promotes glucose chemotaxis and decreases Na+ chemotaxis after glucose conditioning. Furthermore, genetic screening identified ENSA-1, an ortholog of the protein phosphatase inhibitor ARPP-16/19, which functions in parallel with PKC-1 in glucose-induced chemotactic learning toward distinct chemicals. These findings suggest that kinase-phosphatase signaling regulates the balance between learned behaviors based on glucose conditioning in ASEL, which might contribute to migration toward chemical compositions where the animals were previously fed.


Subject(s)
Caenorhabditis elegans , Sugars , Animals , Caenorhabditis elegans/genetics , Chemotaxis , Sodium Chloride , Glucose/pharmacology , Monosaccharides
3.
FEBS Open Bio ; 7(4): 562-576, 2017 04.
Article in English | MEDLINE | ID: mdl-28396840

ABSTRACT

Memory includes the processes of acquisition, consolidation and retrieval. In the study of aversive olfactory memory in Drosophila melanogaster, flies are first exposed to an odor (conditioned stimulus, CS+) that is associated with an electric shock (unconditioned stimulus, US), then to another odor (CS-) without the US, before allowing the flies to choose to avoid one of the two odors. The center for memory formation is the mushroom body which consists of Kenyon cells (KCs), dopaminergic neurons (DANs) and mushroom body output neurons (MBONs). However, the roles of individual neurons are not fully understood. We focused on the role of a single pair of GABAergic neurons (MBON-γ1pedc) and found that it could inhibit the effects of DANs, resulting in the suppression of aversive memory acquisition during the CS- odor presentation, but not during the CS+ odor presentation. We propose that MBON-γ1pedc suppresses the DAN-dependent effect that can convey the aversive US during the CS- odor presentation, and thereby prevents an insignificant stimulus from becoming an aversive US.

SELECTION OF CITATIONS
SEARCH DETAIL
...