Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 99: 110450, 2022 11.
Article in English | MEDLINE | ID: mdl-36029940

ABSTRACT

p38 MAPKs are key regulators of cellular adaptation to various stress stimuli, however, their role in mediating erythrocyte cell death and hemolysis is largely unknown. We hypothesized that activation of erythrocyte p38 MAPK is a common event in the stimulation of hemolysis, and that inhibition of p38 MAPK pathways could mitigate hemolysis in hemoglobinopathies. We exposed human erythrocytes to diamide-induced oxidative stress or to hypoosmotic shock in the presence or absence of p38 MAPK inhibitors (SCIO469, SB203580, CMPD1) and used immunoblotting to determine MAPK activity and to identify possible downstream effectors of p38 MAPK. We also evaluated the impact of p38 MAPK inhibitors on stress-induced hemolysis or hypoxia-induced sickling in erythrocytes from mouse models of sickle cell disease. We found that human erythrocytes express conventional MAPKs (MKK3, p38 MAPK, MAPKAPK2) and identified differential MAPK activation pathways in each stress condition. Specifically, p38 MAPK inhibition in diamide-treated erythrocytes was associated with decreased phosphorylation of Src tyrosine kinases and Band 3 protein. Conversely, hypoosmotic shock induced MAPKAPK2 and RSK2 phosphorylation, which was inhibited by SCIO469 or CMPD1. Relevant to hemoglobinopathies, sickle cell disease was associated with increased erythrocyte MKK3, p38 MAPK, and MAPKAPK2 expression and phosphorylation as compared with erythrocytes from healthy individuals. Furthermore, p38 MAPK inhibition was associated with decreased hemolysis in response to diamide treatments or osmotic shock, and with decreased erythrocyte sickling under experimental hypoxia. These findings provided insights into MAPK-mediated signaling pathways that regulate erythrocyte function and hemolysis in response to extracellular stressors or human diseases.


Subject(s)
Anemia, Sickle Cell , Hemoglobinopathies , Animals , Anion Exchange Protein 1, Erythrocyte/metabolism , Diamide , Enzyme Activation , Erythrocytes/metabolism , Hemolysis , Humans , Hypoxia , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Oxidative Stress , Phosphorylation , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/metabolism
2.
Anat Rec (Hoboken) ; 304(5): 1020-1053, 2021 05.
Article in English | MEDLINE | ID: mdl-33015949

ABSTRACT

Cranial synchondroses are cartilaginous joints between basicranial bones or between basicranial bones and septal cartilage, and have been implicated as having a potential active role in determining craniofacial form. However, few studies have examined them histologically. Using histological and immunohistochemical methods, we examined all basicranial joints in serial sagittal sections of newborn heads from nine genera of primates (five anthropoids, four strepsirrhines). Each synchondrosis was examined for characteristics of active growth centers, including a zonal distribution of proliferating and hypertrophic chondrocytes, as well as corresponding changes in matrix characteristics (i.e., density and organization of Type II collagen). Results reveal three midline and three bilateral synchondroses possess attributes of active growth centers in all species (sphenooccipital, intrasphenoidal, presphenoseptal). One midline synchondrosis (ethmoseptal) and one bilateral synchondrosis (alibasisphenoidal synchondrosis [ABS]) are active growth centers in some but not all newborn primates. ABS is oriented more anteriorly in monkeys compared to lemurs and bushbabies. The sphenoethmoidal synchondrosis (SES) varies at birth: in monkeys, it is a suture-like joint (i.e., fibrous tissue between the two bones); however, in strepsirrhines, the jugum sphenoidale is ossified while the mesethmoid remains cartilaginous. No species possesses an SES that has the organization of a growth plate. Overall, our findings demonstrate that only four midline synchondroses have the potential to actively affect basicranial angularity and facial orientation during the perinatal timeframe, while the SES of anthropoids essentially transitions toward a "suture-like" function, permitting passive growth postnatally. Loss of cartilaginous continuity at SES and reorientation of ABS distinguish monkeys from strepsirrhines.


Subject(s)
Cartilage/growth & development , Cranial Sutures/growth & development , Skull/growth & development , Strepsirhini/growth & development , Animals , Animals, Newborn , Osteogenesis/physiology
3.
Anat Rec (Hoboken) ; 304(5): 939-957, 2021 05.
Article in English | MEDLINE | ID: mdl-33040450

ABSTRACT

Living primates show a complex trend in reduction of nasal cavity spaces and structures due to moderate to severe constraint on interorbital breadth. Here we describe the ontogeny of the posterior end of the primate cartilaginous nasal capsule, the thimble shaped posterior nasal cupula (PNC), which surrounds the hind end of the olfactory region. We used a histologically sectioned sample of strepsirrhine primates and two non-primates (Tupaia belangeri, Rousettus leschenaulti), and histochemical and immunohistochemical methods to study the PNC in a perinatal sample. At birth, most strepsirrhines possess only fragments of PNC, and these lack a perichondrium. Fetal specimens of several species reveal a more complete PNC, but the cartilage exhibits uneven or weak reactivity to type II collagen antibodies. Moreover, there is relatively less matrix than in the septal cartilage, resulting in clustering of chondrocytes, some of which are in direct contact with adjacent connective tissues. In one primate (Varecia spp.) and both non-primates, the PNC has a perichondrium at birth. In older, infant Varecia and Rousettus, the perichondrium of the PNC is absent, and PNC fragmentation at its posterior pole has occurred in the former. Loss of the perichondrium for the PNC appears to precede resorption of the posterior end of the nasal capsule. These results suggest that the consolidation of the basicranial and facial skeletons happens ontogenetically earlier in primates than other mammals. We hypothesize that early loss of cartilage at the sphenoethmoidal articulation limits chondral mechanisms for nasal complexity, such as interstitial expansion or endochondral ossification.


Subject(s)
Chiroptera/anatomy & histology , Face/anatomy & histology , Nasal Cavity/anatomy & histology , Primates/anatomy & histology , Skull Base/anatomy & histology , Tupaia/anatomy & histology , Animals , Biological Evolution , Species Specificity
4.
Fam Community Health ; 40(4): 291-297, 2017.
Article in English | MEDLINE | ID: mdl-28820783

ABSTRACT

Obesity is a major health concern in Hispanic populations. This study evaluated the epidemiology of obesity and associated factors among Hispanics using the data from the 2013-2014 National Health and Nutrition Examination Survey. Among the 1241 participants (20 years of age or older), the prevalence rates were as follows: overweight, 77.1%; obesity, 42.4%; and central obesity, 57.0%. These rates were consistent throughout most age groups. Significantly, more females than males were obese. Higher obesity rates were seen among those with diabetes, high cholesterol, hypertension, heart disease, and arthritis. Those born in the United States were more likely to be obese. Effective obesity prevention programs are vital for this population.


Subject(s)
Obesity/epidemiology , Overweight/epidemiology , Adult , Aged , Aged, 80 and over , Female , Hispanic or Latino , Humans , Male , Middle Aged , Prevalence , United States , Young Adult
5.
Environ Health Perspect ; 124(8): 1199-207, 2016 08.
Article in English | MEDLINE | ID: mdl-26955063

ABSTRACT

BACKGROUND: Fibrotic lung diseases occur predominantly in males, and reports describe better survival in affected females. Male mice are more sensitive to silica-induced lung fibrosis than silica-treated female mice. Secreted phosphoprotein 1 (SPP1, also known as osteopontin) increases in pulmonary fibrosis, and Spp1 transcription may be regulated by estrogen or estrogen receptor-related receptors. OBJECTIVE: We determined whether differences in silica-induced SPP1 levels contribute to sex differences in lung fibrosis. METHODS: Male and female mice were treated with 0.2 g/kg intratracheal silica, and lung injury was assessed 1, 3, or 14 days post-exposure. Gene-targeted (Spp1-/-) mice, control Spp1+/+ (C57BL/6J) mice, ovariectomized (OVX) female mice, and estrogen-treated male mice were treated with silica, and lung injury was assessed. RESULTS: Silica-induced SPP1 in lung tissue, bronchoalveolar lavage, and serum increased more in male than in female mice. Following silica treatment, bronchoalveolar lavage cell infiltrates decreased in female Spp1-/- mice compared with female Spp1+/+ mice, and lung hydroxyproline decreased in male Spp1-/- mice compared with male Spp1+/+ mice. OVX female mice had increased lung SPP1 expression in response to silica compared with silica-treated sham female mice. Silica-induced lung collagen and hydroxyproline (markers of fibrosis), and SPP1 levels decreased in estrogen-treated males compared with untreated males. CONCLUSION: These findings suggest that sex-specific differences in SPP1 levels contribute to the differential sensitivity of male and female mice to the development of silica-induced fibrosis. CITATION: Latoche JD, Ufelle AC, Fazzi F, Ganguly K, Leikauf GD, Fattman CL. 2016. Secreted phosphoprotein 1 and sex-specific differences in silica-induced pulmonary fibrosis in mice. Environ Health Perspect 124:1199-1207; http://dx.doi.org/10.1289/ehp.1510335.


Subject(s)
Air Pollutants/toxicity , Inhalation Exposure/analysis , Osteopontin/metabolism , Silicon Dioxide/toxicity , Animals , Bronchoalveolar Lavage Fluid , Female , Male , Mice , Mice, Inbred C57BL , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...