Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Child Dev ; 94(6): 1642-1658, 2023.
Article in English | MEDLINE | ID: mdl-37487032

ABSTRACT

Previous research on the role of prior skills like proportional reasoning skills for the development of mathematical concepts offers conclusions such as "more (prior skills) is better (for later learning)." Insights, which prior skill level goes along with which level of learning outcomes, may advance the understanding of the development of mathematical concepts. An exploratory approach is presented based on level models to describe the relation between symbolic proportional reasoning skills and fraction outcomes beyond linearity. Analyses draw on samples of German fourth to sixth graders from a scaling (2017, N = 325, 54.8% female) and longitudinal study (2018/2019, N = 436, 42.7% female). Particularly mastering natural and internal rational ratios in proportional reasoning seems relevant for successful fraction learning.


Subject(s)
Learning , Humans , Female , Male , Longitudinal Studies , Achievement , Mathematical Concepts
2.
Article in English | MEDLINE | ID: mdl-36065455

ABSTRACT

Assessing students on-the-fly is an important but challenging task for teachers. In initial teacher education, a call has been made to better prepare pre-service teachers for this complex task. Advances in technology allow this training to be done through authentic learning environments, such as video-based simulations. To understand the learning process in such simulations, it is necessary to determine how cognitive and motivational learner characteristics influence situative learning experiences, such as the perception of authenticity, cognitive load, and situational motivation, during the simulation and how they affect aspects of performance. In the present study, N = 150 pre-service teachers from German universities voluntarily participated in a validated online video-based simulation targeting on-the-fly student assessments. We identified three profiles of learner characteristics: one with above average knowledge, one with above average motivational-affective traits, and one with below average knowledge and motivational-affective traits. These profiles do not differ in the perception of the authenticity of the simulation. Furthermore, the results indicate that the profiled learners navigate differently through the simulation. The knowledgeable learners tended to outperform learners of the other two profiles by using more learning time for the assessment process, also resulting in higher judgment accuracy. The study highlights how learner characteristics and processes interact, which helps to better understand individual learning processes in simulations. Thus, the findings may be used as a basis for future simulation research with a focus on adaptive and individual support.

4.
Front Psychol ; 11: 531640, 2020.
Article in English | MEDLINE | ID: mdl-33192773

ABSTRACT

A research link between conditional reasoning and mathematics has been reported only for late adolescents and adults, despite claims about the pivotal importance of conditional reasoning, i.e., reasoning with if-then statements, in mathematics. Secondary students' problems with deductive reasoning in mathematics have been documented for a long time. However, evidence from developmental psychology shows that even elementary students possess some early conditional reasoning skills in familiar contexts. It is still an open question to what extent conditional reasoning with mathematical concepts differs from conditional reasoning in familiar everyday contexts. Based on Mental Model Theory (MMT) of conditional reasoning, we assume that (mathematical) content knowledge will influence the generation of models, when conditionals concern mathematical concepts. In a cross-sectional study, 102 students in Cyprus from grades 2, 4, and 6 solved four conditional reasoning tasks on each type of content (everyday and mathematical). All four logical forms, modus ponens (MP), modus tollens (MT), denial of the antecedent (DA), and affirmation of the consequent (AC), were included in each task. Consistent with previous findings, even second graders were able to make correct inferences on some logical forms. Controlling for Working Memory (WM), there were significant effects of grade and logical form, with stronger growth on MP and AC than on MT and DA. The main effect of context was not significant, but context interacted significantly with logical form and grade level. The pattern of results was not consistent with the predictions of MMT. Based on analyses of students' chosen responses, we propose an alternative mechanism explaining the specific pattern of results. The study indicates that deductive reasoning skills arise from a combination of knowledge of domain-general principles and domain-specific knowledge. It extends results concerning the gradual development of primary students' conditional reasoning with everyday concepts to reasoning with mathematical concepts adding to our understanding of the link between mathematics and conditional reasoning in primary school. The results inspire the development of educational interventions, while further implications and limitations of the study are discussed.

5.
Front Psychol ; 11: 572165, 2020.
Article in English | MEDLINE | ID: mdl-33551899

ABSTRACT

An increasing number of learning goals refer to the acquisition of cognitive skills that can be described as 'resource-based,' as they require the availability, coordination, and integration of multiple underlying resources such as skills and knowledge facets. However, research on the support of cognitive skills rarely takes this resource-based nature explicitly into account. This is mirrored in prior research on mathematical argumentation and proof skills: Although repeatedly highlighted as resource-based, for example relying on mathematical topic knowledge, methodological knowledge, mathematical strategic knowledge, and problem-solving skills, little evidence exists on how to support mathematical argumentation and proof skills based on its resources. To address this gap, a quasi-experimental intervention study with undergraduate mathematics students examined the effectiveness of different approaches to support both mathematical argumentation and proof skills and four of its resources. Based on the part-/whole-task debate from instructional design, two approaches were implemented during students' work on proof construction tasks: (i) a sequential approach focusing and supporting each resource of mathematical argumentation and proof skills sequentially after each other and (ii) a concurrent approach focusing and supporting multiple resources concurrently. Empirical analyses show pronounced effects of both approaches regarding the resources underlying mathematical argumentation and proof skills. However, the effects of both approaches are mostly comparable, and only mathematical strategic knowledge benefits significantly more from the concurrent approach. Regarding mathematical argumentation and proof skills, short-term effects of both approaches are at best mixed and show differing effects based on prior attainment, possibly indicating an expertise reversal effect of the relatively short intervention. Data suggests that students with low prior attainment benefited most from the intervention, specifically from the concurrent approach. A supplementary qualitative analysis showcases how supporting multiple resources concurrently alongside mathematical argumentation and proof skills can lead to a synergistic integration of these during proof construction and can be beneficial yet demanding for students. Although results require further empirical underpinning, both approaches appear promising to support the resources underlying mathematical argumentation and proof skills and likely also show positive long-term effects on mathematical argumentation and proof skills, especially for initially weaker students.

6.
J Cyst Fibros ; 18(5): 714-720, 2019 09.
Article in English | MEDLINE | ID: mdl-31138497

ABSTRACT

BACKGROUND: Nontuberculous mycobacteria are recognized as a concern for cystic fibrosis (CF) patients due to increasing disease prevalence and the potential for detrimental effects on pulmonary function and mortality. Current standard of care involves prolonged systemic antibiotics, which often leads to severe side effects and poor treatment outcomes. In this study, we investigated the tolerability and efficacy of a novel inhaled therapeutic in various mouse models of NTM disease. METHODS: We developed clofazimine inhalation suspension (CIS), a novel formulation of clofazimine developed for inhaled administration. To determine the efficacy, minimum inhibitory concentrations were evaluated in vitro, and tolerability of CIS was determined in naïve mouse models over various durations. After establishing tolerability, CIS efficacy was tested in in vivo infection models of both Mycobacterium avium and M. abscessus. Lung and plasma clofazimine levels after chronic treatments were evaluated. RESULTS: Clofazimine inhalation suspension demonstrated antimycobacterial activity in vitro, with MIC values between 0.125 and 2 µg/ml for M. avium complex and M. abscessus. Administration into naïve mice showed that CIS was well tolerated at doses up to 28 mg/kg over 28 consecutive treatments. In vivo, CIS was shown to significantly improve bacterial elimination from the lungs of both acute and chronic NTM-infected mouse models compared to negative controls and oral clofazimine administration. Clofazimine concentrations in lung tissue were approximately four times higher than the concentrations achieved by oral dosing. CONCLUSION: Clofazimine inhalation suspension is a well tolerated and effective novel therapeutic candidate for the treatment of NTM infections in mouse models.


Subject(s)
Anti-Bacterial Agents , Clofazimine , Cystic Fibrosis , Mycobacterium Infections, Nontuberculous/drug therapy , Nontuberculous Mycobacteria/drug effects , Administration, Inhalation , Aerosols , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacokinetics , Biological Availability , Clofazimine/administration & dosage , Clofazimine/adverse effects , Clofazimine/pharmacokinetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Cystic Fibrosis/physiopathology , Mice , Microbial Sensitivity Tests/methods , Tissue Distribution , Treatment Outcome
7.
Article in English | MEDLINE | ID: mdl-19963811

ABSTRACT

Simulations of artificial vision suggest that 1000 electrodes may be required to restore vision to individuals with diseases of the outer retina. In order to achieve such an implant, new technology is needed, since the state-of-the-art implantable neural stimulator has at most 22 contacts with neural tissue. A critical component of this system is the multi-channel, stimulating electrode array. This array must meet very challenging, competing requirements for manufacturing, integration, surgical handling, and biocompatibility. Our lab has evaluated 3 polymers as retinal prosthesis substrates: polyimide, parylene, and silicone.


Subject(s)
Electrodes , Prostheses and Implants , Retinal Diseases/surgery , Animals , Biocompatible Materials , Dogs , Electric Stimulation , Electrodes, Implanted , Equipment Design , Humans , Lasers , Polymers/chemistry , Prosthesis Design , Retina/surgery , Retinal Diseases/therapy , Retinal Vessels/surgery , Silicones/chemistry , Surface Properties , Xylenes/chemistry
8.
J Neural Eng ; 6(3): 035002, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19458405

ABSTRACT

The purpose of this paper is to present a wide field electrode array that may increase the field of vision in patients implanted with a retinal prosthesis. Mobility is often impaired in patients with low vision, particularly in those with peripheral visual loss. Studies on low vision patients as well as simulation studies on normally sighted individuals have indicated a strong correlation between the visual field and mobility. In addition, it has been shown that an increased visual field is associated with a significant improvement in visual acuity and object discrimination. Current electrode arrays implanted in animals or human vary in size; however, the retinal area covered by the electrodes has a maximum projected visual field of about 10 degrees. We have designed wide field electrode arrays that could potentially provide a visual field of 34 degrees, which may significantly improve the mobility. Tests performed on a mechanical eye model showed that it was possible to fix 10 mm wide flexible polyimide dummy electrode arrays onto the retina using a single retinal tack. They also showed that the arrays could conform to the inner curvature of the eye. Surgeries on an enucleated porcine eye model demonstrated feasibility of implantation of 10 mm wide arrays through a 5 mm eye wall incision.


Subject(s)
Artificial Intelligence , Biomedical Engineering/instrumentation , Blindness/rehabilitation , Electric Stimulation Therapy/instrumentation , Electrodes, Implanted , Prostheses and Implants , Retina/physiology , Electric Stimulation Therapy/trends , Equipment Design , Equipment Failure Analysis , Humans , Visual Fields
9.
Biosens Bioelectron ; 19(9): 1109-16, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15018966

ABSTRACT

Micromachined probes, with iridium (Ir) microelectrodes on silicon shanks, were evaluated to assess their suitability for cardiac electrogram recording. The electrochemical activation (anodic oxidation) procedure for the circular Ir microelectrode was investigated using the square wave potential according to the electrode size, number of cycles, and cathodic-anodic potential level of the square wave. Increase in the charge storage capacity was pronounced either in smaller electrodes or with higher potential level of the square wave. The electrode impedance reduced in a similar manner with increasing number of cycle irrespective of the electrode size. With either lower potential level (-0.70/+0.60 V) or smaller number of cycle (200 cycles) than those for the activation of stimulating electrode, the likelihood of overactivation of the recording microelectrode can be minimized. These anodic IrOx film (AIROF) microelectrodes were used for the recording of extracellular electrograms in two different ex vivo cardiac tissue preparations. A single-shank microprobe was applied to the left ventricle of a mouse heart. Both the spontaneous and paced transmural responses propagating between epicardium and endocardium were obtained. Longitudinal cardiac wavefronts propagating along the rabbit papillary muscle were also recorded with a unique multiple-shank design. The measured mean amplitude and the propagation velocity of the extracellular voltage were 12.2 +/- 1.8 mV and 58.9 +/- 2.2 cm/s, respectively (n = 27). These microprobes with precisely defined electrode spacing make a useful tool for the spatial and temporal mapping of electrical properties in isolated heart tissues ex vivo.


Subject(s)
Biosensing Techniques , Electrocardiography/methods , Electrodes , Heart/physiology , Animals , Iridium , Membrane Potentials , Myocardium/metabolism , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...