Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Entomol ; 48(5): 1241-1248, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31260530

ABSTRACT

Pyramiding (combining) of plant incorporated protectants (PIPs) with insecticidal activity in genetically engineered crops is a strategy used to improve efficacy as well as delay potential resistance for a specific group of targets. In some countries, a regulatory risk assessment is required for breeding "stacks" expressing multiple PIPs and these countries may require an assessment of potential interaction among the PIPs. This study evaluated whether combining soybean events MON 87551 and MON 87701 results in a toxicological interaction that effects a species that is controlled by each event. MON 87751 coexpresses the Cry1A.105 and Cry2Ab2 proteins and MON 87701 expresses the Cry1Ac protein. EC50 values for MON 87751 and MON 87701 were comparable in diet-incorporation bioassays using corn earworm (Lepidoptera: Noctuidae, Helicoverpa zea) and the observed combined activity of the stack was consistent with predictions of additivity (i.e., no interaction). Under the concentration and response addition models, predicted and observed median effect levels differed by <10%. These results demonstrate independent action at the median effect level between the insecticidal activity of MON 87751 and MON 87701. Taken together, no interaction between these PIPs and acceptable margins of safety for the individual proteins to nontarget organisms, it is appropriate to bridge back to the risk assessments for the individual products that demonstrated environmental safety of stack products containing both MON 87751 and MON 87701.


Subject(s)
Insecticides , Moths , Animals , Bacterial Proteins , Breeding , Endotoxins , Hemolysin Proteins , Plants, Genetically Modified , Zea mays
2.
PLoS One ; 12(1): e0169409, 2017.
Article in English | MEDLINE | ID: mdl-28072875

ABSTRACT

The spectrum of insecticidal activity of Cry51Aa2.834_16 protein targeting hemipteran and thysanopteran insect pests in cotton was characterized by selecting and screening multiple pest and non-pest species, based on representation of ecological functional groups, taxonomic relatedness (e.g. relationship to species where activity was observed), and availability for effective testing. Seven invertebrate orders, comprising 12 families and 17 representative species were screened for susceptibility to Cry51Aa2.834_16 protein and/or the ability of the protein to protect against feeding damage in laboratory, controlled environments (e.g. greenhouse/growth chamber), and/or field studies when present in cotton plants. The screening results presented for Cry51Aa2.834_16 demonstrate selective and limited activity within three insect orders. Other than Orius insidiosus, no activity was observed for Cry51Aa2.834_16 against several groups of arthropods that perform key ecological roles in some agricultural ecosystems (e.g. pollinators, decomposers, and natural enemies).


Subject(s)
Gossypium/genetics , Gossypium/parasitology , Insecticides/pharmacology , Plant Diseases/genetics , Plant Diseases/parasitology , Plant Proteins/genetics , Plant Proteins/metabolism , Protective Agents/metabolism , Animal Feed , Animals , Arthropods/drug effects , Disease Resistance/genetics , Female , Gossypium/drug effects , Male , Pest Control, Biological/methods , Plants, Genetically Modified
3.
Environ Toxicol Chem ; 36(3): 727-734, 2017 03.
Article in English | MEDLINE | ID: mdl-27530554

ABSTRACT

Determining the rate of biodegradation of double-stranded RNA (dsRNA) in the environment is an essential element of a comprehensive risk assessment of an RNA-based agricultural product. This information is used during problem formulation to define relevant routes and durations of environmental exposure for in planta-expressed dsRNA. Although exposure to biotechnology-derived crops expressing dsRNA traits in the aquatic environment is predicted to be minimal, little is known regarding the fate of dsRNA in these environments. To assess exposure to aquatic environments, a study was conducted to measure the rate of biodegradation of DvSnf7 dsRNA in aerobic water-sediment systems. Aquatic systems containing natural water and sediments that varied in physical and chemical characteristics were treated with dsRNA by applying DvSnf7 dsRNA directly to the water column. In the present study, DvSnf7 dsRNA dissipated rapidly from the water phase and was undetectable within 7 d as measured by QuantiGene (Affymetrix) and a sensitive insect bioassay in these diverse systems. Degradation kinetics estimated a half-life (time to 50% dissipation [DT50]) of less than 3 d and a time to 90% dissipation of approximately 4 d. Further analysis indicated that DvSnf7 dsRNA had DT50 values of less than 6 d in both sediment-free systems containing natural water and systems with only sediment. Taken together, the results of the present study indicate that dsRNA-based agricultural products rapidly degrade and consequently are unlikely to persist in aquatic environments. Environ Toxicol Chem 2017;36:727-734. © 2016 SETAC.


Subject(s)
Geologic Sediments/chemistry , RNA, Double-Stranded/analysis , RNA, Plant/analysis , Water Pollutants, Chemical/analysis , Agriculture , Animals , Biodegradation, Environmental , Biological Assay , Crops, Agricultural , Half-Life , Insecta/drug effects
4.
Regul Toxicol Pharmacol ; 81: 77-88, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27494948

ABSTRACT

MON 87411 maize, which expresses DvSnf7 RNA, was developed to provide an additional mode of action to confer protection against corn rootworm (Diabrotica spp.). A critical step in the registration of a genetically engineered crop with an insecticidal trait is performing an ecological risk assessment to evaluate the potential for adverse ecological effects. For MON 87411, an assessment plan was developed that met specific protection goals by characterizing the routes and levels of exposure, and testing representative functional taxa that would be directly or indirectly exposed in the environment. The potential for toxicity of DvSnf7 RNA was evaluated with a harmonized battery of non-target organisms (NTOs) that included invertebrate predators, parasitoids, pollinators, soil biota as well as aquatic and terrestrial vertebrate species. Laboratory tests evaluated ecologically relevant endpoints such as survival, growth, development, and reproduction and were of sufficient duration to assess the potential for adverse effects. No adverse effects were observed with any species tested at, or above, the maximum expected environmental concentration (MEEC). All margins of exposure for NTOs were >10-fold the MEEC. Therefore, it is reasonable to conclude that exposure to DvSnf7 RNA, both directly and indirectly, is safe for NTOs at the expected field exposure levels.


Subject(s)
Coleoptera/genetics , Crops, Agricultural/toxicity , Food Safety , Food, Genetically Modified/toxicity , Pest Control, Biological/methods , Plants, Genetically Modified/toxicity , RNA, Double-Stranded/toxicity , Toxicity Tests/methods , Zea mays/toxicity , Animals , Coleoptera/pathogenicity , Computational Biology , Computer Simulation , Crops, Agricultural/genetics , Crops, Agricultural/parasitology , Databases, Genetic , Environmental Exposure , Food, Genetically Modified/parasitology , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Humans , No-Observed-Adverse-Effect Level , Plants, Genetically Modified/genetics , Plants, Genetically Modified/parasitology , RNA Interference , RNA, Double-Stranded/genetics , Risk Assessment , Species Specificity , Time Factors , Zea mays/genetics , Zea mays/parasitology
5.
Regul Toxicol Pharmacol ; 79: 35-41, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27155596

ABSTRACT

Bollgard(®) III was developed by combining cotton events COT102 and MON 15985 through conventional breeding to improve efficacy against lepidopteran feeding damage. COT102 produces the Vip3Aa19 protein and MON 15985 produces the Cry1Ac and Cry2Ab2 proteins. COT102 × MON 15985 has also been bred with Roundup Ready Flex(®) cotton (MON 88913) that confers glyphosate tolerance. This study evaluated the activity of COT102 and MON 15985 and the combined activity of COT102 and MON 15985 against the cotton bollworm (CBW, Helicoverpa zea). COT102, MON 15985, COT102 × MON 15985 and COT102 × MON 15985 × MON 88913 have comparable Vip3Aa19 and/or Cry1Ac, Cry2Ab2 protein expression levels as determined by enzyme-linked immunosorbent assay. CBW demonstrated concentration-dependent growth inhibition after 7-days of feeding on lyophilized leaf tissue derived from COT102, MON 15985, COT102 × MON 15985 and COT102 × MON 15985 × MON 88913 incorporated into an artificial diet. Observed EC50 values for COT102 × MON 15985 and COT102 × MON 15985 × MON 88913 were comparable (≤4% deviation) with the predicted EC50 value under the assumption of additivity using the combined activity of COT102 and MON 15985. No interaction in biological activity between COT102 and MON 15985 is consistent with results from competition and ligand blotting assays that demonstrated that Vip3Aa does not inhibit the binding of either Cry1Ac or Cry2Ab2 and vice versa. The results from this study demonstrate that the activity of COT102 × MON 15985 against CBW is consistent with predictions of additivity.


Subject(s)
Bacterial Proteins/genetics , Crosses, Genetic , Endotoxins/genetics , Gossypium/genetics , Hemolysin Proteins/genetics , Moths/growth & development , Pest Control, Biological/methods , Plants, Genetically Modified/genetics , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/metabolism , Endotoxins/metabolism , Gene Expression Regulation, Plant , Genotype , Gossypium/metabolism , Gossypium/parasitology , Hemolysin Proteins/metabolism , Host-Parasite Interactions , Larva/growth & development , Larva/metabolism , Moths/metabolism , Phenotype , Plant Leaves/metabolism , Plant Leaves/parasitology , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/parasitology
6.
Environ Toxicol Chem ; 35(2): 287-94, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26011006

ABSTRACT

The honey bee (Apis mellifera L.) is the most important managed pollinator species worldwide and plays a critical role in the pollination of a diverse range of economically important crops. This species is important to agriculture and historically has been used as a surrogate species for pollinators to evaluate the potential adverse effects for conventional, biological, and microbial pesticides, as well as for genetically engineered plants that produce pesticidal products. As part of the ecological risk assessment of MON 87411 maize, which expresses a double-stranded RNA targeting the Snf7 ortholog (DvSnf7) in western corn rootworm (Diabrotica virgifera virgifera), dietary feeding studies with honey bee larvae and adults were conducted. Based on the mode of action of the DvSnf7 RNA in western corn rootworm, the present studies were designed to be of sufficient duration to evaluate the potential for adverse effects on larval survival and development through emergence and adult survival to a significant portion of the adult stage. Testing was conducted at concentrations of DvSnf7 RNA that greatly exceeded environmentally relevant exposure levels based on expression levels in maize pollen. No adverse effects were observed in either larval or adult honey bees at these high exposure levels, providing a large margin of safety between environmental exposure levels and no-observed-adverse-effect levels.


Subject(s)
Bees/genetics , Bees/physiology , Diet , Feeding Behavior , Food, Genetically Modified , RNA/adverse effects , RNA/genetics , Zea mays/genetics , Animals , Base Sequence , Coleoptera , Computational Biology , Environment , Larva/genetics , Larva/physiology , Molecular Sequence Data , Pollination , RNA, Double-Stranded/adverse effects , RNA, Double-Stranded/genetics , Risk Assessment , Survival Analysis
7.
Regul Toxicol Pharmacol ; 73(2): 607-12, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26361852

ABSTRACT

A biotechnology-derived corn variety, MON 87411, containing a suppression cassette that expresses an inverted repeat sequence that matches the sequence of western corn rootworm (WCR; Diabrotica virgifera virgifera) has been developed. The expression of the cassette results in the formation of a double-stranded RNA (dsRNA) transcript containing a 240 bp fragment of the WCR Snf7 gene (DvSnf7) that confers resistance to corn rootworm by suppressing levels of DvSnf7 mRNA in WCR after root feeding. Internationally accepted guidelines for the assessment of genetically modified crop products have been developed to ensure that these plants are as safe for food, feed, and environmental release as their non-modified counterparts (Codex, 2009). As part of these assessments MON 87411 must undergo an extensive environmental assessment that requires large quantities of DvSnf7 dsRNA that was produced by in vitro transcription (IVT). To determine if the IVT dsRNA is a suitable surrogate for the MON 87411-produced DvSnf7 dsRNA in regulatory studies, the nucleotide sequence, secondary structure, and functional activity of each were characterized and demonstrated to be comparable. This comprehensive characterization indicates that the IVT DvSnf7 dsRNA is equivalent to the MON 87411-produced DvSnf7 dsRNA and it is a suitable surrogate for regulatory studies.


Subject(s)
Plant Roots/genetics , Plants, Genetically Modified/genetics , RNA, Double-Stranded/genetics , Zea mays/genetics , Animals , Coleoptera , Dose-Response Relationship, Drug , Insect Control/methods , Pest Control, Biological/methods , Plant Roots/metabolism , Plants, Genetically Modified/metabolism , RNA, Double-Stranded/biosynthesis , Zea mays/metabolism
8.
PLoS One ; 10(3): e0118622, 2015.
Article in English | MEDLINE | ID: mdl-25734482

ABSTRACT

In recent years, corn rootworm (CRW)-resistant maize events producing two or more CRW-active Bt proteins have been commercialized to enhance efficacy against the target pest(s) by providing multiple modes of action (MoA). The maize hybrid MON 87411 has been developed that produces the CRW-active Cry3Bb1 Bt protein (hereafter Cry3Bb1) and expresses a RNAi-mediated MoA that also targets CRW. As part of an environmental risk assessment for MON 87411, the potential for an interaction between the CRW-active DvSnf7 RNA (hereafter DvSnf7) and Cry3Bb1 was assessed in 12-day diet incorporation bioassays with the southern corn rootworm (SCR, Diabrotica undecimpunctata howardi). The potential for an interaction between DvSnf7 and Cry3Bb1 was evaluated with two established experimental approaches. The first approach evaluated each substance alone and in combination over three different response levels. For all three response levels, observed responses were shown to be additive and not significantly different from predicted responses under the assumption of independent action. The second approach evaluated the potential for a fixed sub-lethal concentration of Cry3Bb1 to decrease the median lethal concentration (LC50) of DvSnf7 and vice-versa. With this approach, the LC50 value of DvSnf7 was not altered by a sub-lethal concentration of Cry3Bb1 and vice-versa. In addition, the potential for an interaction between the Cry3Bb1 and DvSnf7 was tested with Colorado potato beetle (CPB, Leptinotarsa decemlineata), which is sensitive to Cry3Bb1 but not DvSnf7. CPB assays also demonstrated that DvSnf7 does not alter the activity of Cry3Bb1. The results from this study provide multiple lines of evidence that DvSnf7 and Cry3Bb1 produced in MON 87411 have independent action.


Subject(s)
Coleoptera/drug effects , Endotoxins/toxicity , Pest Control, Biological , RNA, Small Interfering/toxicity , Animals , Chimera , Coleoptera/growth & development , Endotoxins/biosynthesis , Endotoxins/genetics , Endotoxins/isolation & purification , Gene Expression , Larva/drug effects , Larva/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Plants, Genetically Modified/parasitology , RNA, Small Interfering/biosynthesis , RNA, Small Interfering/genetics , RNA, Small Interfering/isolation & purification , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Solanum tuberosum/parasitology , Transgenes , Zea mays/genetics , Zea mays/immunology , Zea mays/parasitology
9.
Transgenic Res ; 22(6): 1207-22, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23748931

ABSTRACT

The sequence specificity of the endogenous RNA interference pathway allows targeted suppression of genes essential for insect survival and enables the development of durable and efficacious insecticidal products having a low likelihood to adversely impact non-target organisms. The spectrum of insecticidal activity of a 240 nucleotide (nt) dsRNA targeting the Snf7 ortholog in Western Corn Rootworm (WCR; Diabrotica virgifera virgifera) was characterized by selecting and testing insects based upon their phylogenetic relatedness to WCR. Insect species, representing 10 families and 4 Orders, were evaluated in subchronic or chronic diet bioassays that measured potential lethal and sublethal effects. When a specific species could not be tested in diet bioassays, the ortholog to the WCR Snf7 gene (DvSnf7) was cloned and corresponding dsRNAs were tested against WCR and Colorado potato beetle (Leptinotarsa decemlineata); model systems known to be sensitive to ingested dsRNA. Bioassay results demonstrate that the spectrum of activity for DvSnf7 is narrow and activity is only evident in a subset of beetles within the Galerucinae subfamily of Chrysomelidae (>90% identity with WCR Snf7 240 nt). This approach allowed for evaluating the relationship between minimum shared nt sequence length and activity. A shared sequence length of ≥ 21 nt was required for efficacy against WCR (containing 221 potential 21-nt matches) and all active orthologs contained at least three 21 nt matches. These results also suggest that WCR resistance to DvSnf7 dsRNA due to single nucleotide polymorphisms in the target sequence of 240 nt is highly unlikely.


Subject(s)
Insect Control/methods , Insect Proteins/antagonists & inhibitors , Plants, Genetically Modified/genetics , RNA, Double-Stranded/genetics , Animals , Coleoptera/drug effects , Coleoptera/genetics , Coleoptera/pathogenicity , Endotoxins/antagonists & inhibitors , Endotoxins/genetics , Insect Proteins/genetics , Larva/genetics , RNA Interference , RNA, Double-Stranded/pharmacology , Zea mays/genetics
10.
Environ Entomol ; 40(6): 1613-21, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22217780

ABSTRACT

The insidious flower bug, Orius insidiosus (Say) (Heteroptera: Anthocoridae) is an important surrogate species for assessing potential effects of plant-incorporated protectants (PIPs) on nontarget heterotrophic predators. In this study, a continuous dietary exposure system was optimized by assessing the effect of diet composition and age on the survival and development of nymphs of O. insidiosus. Greater than 85% control survival and an acceptable rate of development from nymph hatching to adult was achieved using 5-d-old nymphs at test initiation and a bee pollen-based diet supplemented with 25% Ephestia eggs. There was an unacceptable level of mortality (>40%) and/or a significantly prolonged development time when nymphs were <5 d old at test initiation. When 5-d-old nymphs were fed a bee pollen diet containing 25% Ephestia eggs and 100 µg/g potassium arsenate, time-dependent mortality was observed with a median lethal time (LT50) of 4.4 d and 100% mortality was observed after 10 d of feeding, indicating the effectiveness of the test system to detect adverse effects by dietary exposure. It is recommended that well-defined 5-d-old nymphs and an encapsulated bee pollen-based diet containing 25% ground Ephestia eggs be used in a Tier-I dietary feeding exposure assay for detecting potential effects of PIPs on O. insidiosus nymphs.


Subject(s)
Animal Feed/analysis , Heteroptera/drug effects , Toxicity Tests/methods , Aging , Animals , Arsenates/toxicity , Heteroptera/growth & development , Nymph/drug effects , Nymph/growth & development , Pollen/chemistry , Potassium Compounds/toxicity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...