Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 370: 879-890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782060

ABSTRACT

Broad cellular components-initiated efficient chemical reactions that occur in malignant cells may contribute to exploring emerging strategies for cancer treatment. Herein, an ozonated oleogel (OG(O)) was developed to achieve cancer ozone therapy (O3-T) based on intracellular Criegee's reaction. By integrating the chemo-drug, the ozone-loaded oleogel (Dox@OG(O)) was prepared as a chemotherapeutic agent for local O3-T, associated with chemotherapy (CT)/radiotherapy (RT)/immunotherapy and wound healing. The in vitro results showed that, Dox@OG(O) could achieve high ozone loading efficiency and ensure its stability. This Oleogel-mediated O3-T could directly destroy tumor cells via intracellular Criegee's reaction occurred on cell membranes, as well as the effects of tumor microenvironment (TME) regulation by the generation of oxygen/reactive oxygen species (ROS) and depletion of glutathione (GSH). Meanwhile, under the stimulation of X-ray, an accelerated free radical's production was observed, further combined with the radio-sensitivity after TME regulation, an effective anti-tumor effect would be achieved. Further on, in vivo results demonstrated that the locally implanted Dox@OG(O) could effectively inhibit the growth of both primary and secondary tumors. Considering these results above, it will serve as inspiration for future studies investigating of O3-T, especially for postoperative skin diseases.


Subject(s)
Doxorubicin , Neoplasms , Organic Chemicals , Ozone , Tumor Microenvironment , Ozone/chemistry , Animals , Humans , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Neoplasms/therapy , Organic Chemicals/chemistry , Organic Chemicals/pharmacology , Organic Chemicals/administration & dosage , Mice, Inbred BALB C , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Mice, Nude , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Female , Glutathione/metabolism , Mice
2.
J Mater Chem B ; 12(19): 4629-4641, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38666407

ABSTRACT

Enlightened by the great success of the drug repurposing strategy in the pharmaceutical industry, in the current study, material repurposing is proposed where the performance of carbonyl iron powder (CIP), a nutritional intervention agent of iron supplement approved by the US FDA for iron deficiency anemia in clinic, was explored in anti-cancer treatment. Besides the abnormal iron metabolic characteristics of tumors, serving as potential targets for CIP-based cancer therapy under the repurposing paradigm, the efficacy of CIP as a catalyst in the Fenton reaction, activator for dihydroartemisinin (DHA), thus increasing the chemo-sensitivity of tumors, as well as a potent agent for NIR-II photothermal therapy (PTT) was fully evaluated in an injectable alginate hydrogel form. The CIP-ALG gel caused a rapid temperature rise in the tumor site under NIR-II laser irradiation, leading to complete ablation in the primary tumor. Further, this photothermal-ablation led to the significant release of ATP, and in the bilateral tumor model, both primary tumor ablation and inhibition of secondary tumor were observed simultaneously under the synergistic tumor treatment of nutritional-photothermal therapy (NT/PTT). Thus, material repurposing was confirmed by our pioneering trial and CIP-ALG-meditated NT/PTT/immunotherapy provides a new choice for safe and efficient tumor therapy.


Subject(s)
Adenosine Triphosphate , Antineoplastic Agents , Infrared Rays , Animals , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Immunotherapy , Drug Repositioning , Humans , Lasers , Photothermal Therapy , Mice, Inbred BALB C , Cell Proliferation/drug effects , Cell Line, Tumor , Alginates/chemistry , Female , Hydrogels/chemistry , Hydrogels/pharmacology , Drug Screening Assays, Antitumor , Particle Size , Artemisinins/chemistry , Artemisinins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...