Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 904(2): 290-7, 2001 Jun 22.
Article in English | MEDLINE | ID: mdl-11406127

ABSTRACT

In vitro evidence indicates that gamma-aminobutyric acid (GABA), acting at GABA(A) receptors, exerts a positive trophic effect on monoaminergic neurons during embryogenesis. To determine whether in vivo antagonism of GABA(A) receptors during embryogenesis interferes with the development of monoaminergic neurons, we used mice in which the number of GABA(A) receptors was decreased by 50% by targeted deletion of the beta(3) subunit gene of the GABA(A) receptor. Levels of serotonin, dopamine, norepinephrine, and the metabolites 3,4-deoxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid were measured in the brainstem, cortex, striatum and spinal cord of female adult homozygous null (beta3-/-) and wild-type (beta3+/+) mice, as well as progenitor C57BL/6J and Strain 129/SvJ mice. The level of norepinephrine in the spinal cord of beta3-/- mice was 44% less than that of beta3+/+ mice, and did not differ in the brainstem, cortex or striatum. This finding suggests that beta3 subunit-containing GABA(A) receptors mediate the trophic effects of GABA on a subpopulation of spinally-projecting noradrenergic neurons. In contrast, the levels of serotonin, dopamine or their metabolites were unaffected, suggesting that the development of serotonergic and dopaminergic neurons may require activation of only a small fraction of GABA(A) receptors or may not be dependent on beta3 subunit-containing GABA(A) receptors. Finally, Strain 129/SvJ and C57BL/6J mice differed with respect to the levels of dopamine and its metabolites in the brainstem, spinal cord and cortex. These differences may need to be considered when assessing the phenotype of gene-targeted mice for which these mice serve as progenitor strains.


Subject(s)
Biogenic Monoamines/metabolism , Central Nervous System/embryology , Central Nervous System/metabolism , Gene Expression Regulation, Developmental/physiology , Receptors, GABA-A/deficiency , Animals , Female , Gene Deletion , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, GABA-A/genetics
2.
Neuroscience ; 95(3): 795-806, 2000.
Article in English | MEDLINE | ID: mdl-10670447

ABSTRACT

A line of mice was recently created in which the gabrb3 gene, which encodes the beta3 subunit of the GABA(A) receptor, was inactivated by gene-targeting. The existence of mice with a significantly reduced population of GABA(A) receptors in the CNS enabled an investigation of the role of GABA and GABA(A) receptors in nociception. The present study examined the sensory thresholds of these mice, as well as the antinociceptive effects of subcutaneously or intrathecally administered GABA(A) and GABA(B) receptor agonists. Homozygous null (beta3-/-) mice displayed enhanced responsiveness to low-intensity thermal stimuli in the tail-flick and hot-plate test compared to C57BL/6J and 129/SvJ progenitor strain mice, and their wild-type (beta3+/+) and heterozygous (beta3+/-) littermates. The beta3-/- mice also exhibited enhanced responsiveness to innocuous tactile stimuli compared to C57BL/6J, 129/SvJ and to their beta3+/+ littermates as assessed by von Frey filaments. The presence of thermal hyperalgesia and tactile allodynia in beta3-/- mice is consistent with a loss of inhibition mediated by presynaptic and postsynaptic GABA(A) receptors in the spinal cord. As expected, subcutaneous administration of the GABA(A) receptor agonist 4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol did not produce antinociception in beta3-/- mice, whereas it produced a dose-dependent increase in hot-plate latency in C57BL/6J, 129/SvJ, beta3+/+ and beta3+/- mice. However, the antinociceptive effect of the GABA(B) receptor agonist baclofen in the tail-flick and hot-plate tests was also reduced in beta3-/- mice compared to the progenitor strains, beta3+/+ or beta3+/- mice after either subcutaneous or intrathecal administration. This finding was unexpected and suggests that a reduction in GABA(A) receptors can affect the production of antinociception by other analgesic drugs as well.


Subject(s)
GABA Agonists/pharmacology , Nociceptors/drug effects , Protein Isoforms/deficiency , Receptors, GABA-A/deficiency , Sensory Thresholds/physiology , Animals , Baclofen/administration & dosage , Baclofen/pharmacology , GABA Agonists/administration & dosage , Hot Temperature , Injections, Spinal , Injections, Subcutaneous , Isonicotinic Acids/administration & dosage , Isonicotinic Acids/pharmacology , Isoxazoles/administration & dosage , Isoxazoles/pharmacology , Mice , Mice, Inbred C57BL/genetics , Mice, Inbred Strains/genetics , Physical Stimulation , Protein Isoforms/genetics , Receptors, GABA-A/genetics , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...