Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 8: 956, 2017.
Article in English | MEDLINE | ID: mdl-28871252

ABSTRACT

Angiogenesis is the process of new blood vessel formation and is essential for a tumor to grow beyond a certain size. Tumors secrete the pro-angiogenic factor vascular endothelial growth factor, which acts upon local endothelial cells by binding to vascular endothelial growth factor receptors (VEGFRs). In this study, we describe the development and characterization of V21-DOS47, an immunoconjugate that targets VEGFR2. V21-DOS47 is composed of a camelid single domain anti-VEGFR2 antibody (V21) and the enzyme urease. The conjugate specifically binds to VEGFR2 and urease converts endogenous urea into ammonia, which is toxic to tumor cells. Previously, we developed a similar antibody-urease conjugate, L-DOS47, which is currently in clinical trials for non-small cell lung cancer. Although V21-DOS47 was designed from parameters learned from the generation of L-DOS47, additional optimization was required to produce V21-DOS47. In this study, we describe the expression and purification of two versions of the V21 antibody: V21H1 and V21H4. Each was conjugated to urease using a different chemical cross-linker. The conjugates were characterized by a panel of analytical techniques, including SDS-PAGE, size exclusion chromatography, Western blotting, and LC-MSE peptide mapping. Binding characteristics were determined by ELISA and flow cytometry assays. To improve the stability of the conjugates at physiologic pH, the pIs of the V21 antibodies were adjusted by adding several amino acid residues to the C-terminus. For V21H4, a terminal cysteine was also added for use in the conjugation chemistry. The modified V21 antibodies were expressed in the E. coli BL21 (DE3) pT7 system. V21H1 was conjugated to urease using the heterobifunctional cross-linker succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester (SM(PEG)2), which targets lysine resides in the antibody. V21H4 was conjugated to urease using the homobifunctional cross-linker, 1,8-bis(maleimido)diethylene glycol (BM(PEG)2), which targets the cysteine added to the antibody C-terminus. V21H4-DOS47 was determined to be the superior conjugate as the antibody is easily produced and purified at high levels, and the conjugate can be efficiently generated and purified using methods easily transferrable for cGMP production. In addition, V21H4-DOS47 retains higher binding activity than V21H1-DOS47, as the native lysine residues are unmodified.

2.
J Neuroinflammation ; 11: 84, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24886182

ABSTRACT

BACKGROUND: Beyond cognitive decline, Alzheimer's disease (AD) is characterized by numerous neuropathological changes in the brain. Although animal models generally do not fully reflect the broad spectrum of disease-specific alterations, the APPSL mouse model is well known to display early plaque formation and to exhibit spatial learning and memory deficits. However, important neuropathological features, such as neuroinflammation and lipid peroxidation, and their progression over age, have not yet been described in this AD mouse model. METHODS: Hippocampal and neocortical tissues of APPSL mice at different ages were evaluated. One hemisphere from each mouse was examined for micro- and astrogliosis as well as concomitant plaque load. The other hemisphere was evaluated for lipid peroxidation (quantified by a thiobarbituric acid reactive substances (TBARS) assay), changes in Aß abundance (Aß38, Aß40 and Aß42 analyses), as well as determination of aggregated Aß content (Amorfix A4 assay). Finally, correlation analyses were performed to illustrate the time-dependent correlation between neuroinflammation and Aß load (soluble, insoluble, fibrils), or lipid peroxidation, respectively. RESULTS: As is consistent with previous findings, neuroinflammation starts early and shows strong progression over age in the APPSL mouse model. An analyses of concomitant Aß load and plaque deposition revealed a similar progression, and high correlations between neuroinflammation markers and soluble or insoluble Aß or fibrillar amyloid plaque loads were observed. Lipid peroxidation, as measured by TBARS levels, correlates well with neuroinflammation in the neocortex but not the hippocampus. The hippocampal lipid peroxidation correlated strongly with the increase of LOC positive fiber load, whereas neocortical TBARS levels were unrelated to amyloidosis. CONCLUSIONS: These data illustrate for the first time the progression of major AD related neuropathological features other than plaque load in the APPSL mouse model. Specifically, we demonstrate that microgliosis and astrocytosis are prominent aspects of this AD mouse model. The strong correlation of neuroinflammation with amyloid burden and lipid peroxidation underlines the importance of these pathological factors for the development of AD. The new finding of a different relation of lipid peroxidation in the hippocampus and neocortical regions show that the model might contribute to the understanding of complex pathological mechanisms and their interplay in AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor/genetics , Encephalitis/etiology , Hippocampus/pathology , Neocortex/pathology , Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Encephalitis/pathology , Gene Expression Regulation/genetics , Glial Fibrillary Acidic Protein/metabolism , Humans , Mice , Mice, Transgenic , Mutation/genetics , Thiobarbituric Acid Reactive Substances/metabolism
3.
J Med Chem ; 48(9): 3221-30, 2005 May 05.
Article in English | MEDLINE | ID: mdl-15857128

ABSTRACT

We have integrated two complementary methods, high-throughput virtual screening with a "high-content" wet screening technique based on frontal affinity chromatography with mass spectrometry detection (FAC-MS), for identification of hits against the erythropoietin-producing hepatocellular B2 (EphB2) receptor tyrosine kinase domain. Both an EphB2-directed virtual screen combining docking and scoring and a kinase-directed pharmacophore search strategy were used to identify a compound set enriched in bioactive compounds against EphB2. The coupling of virtual screening methodologies with FAC-MS is a unique hybrid approach that can be used to increase the efficacy of both hit discovery and optimization efforts in drug discovery and has successfully identified hits, in particular 19a (36% shift, IC(50) = 5.2 microM, K(d) = 3.3 microM), as inhibitors for EphB2, a potential cancer target.


Subject(s)
Antineoplastic Agents/chemistry , Receptor, EphB2/antagonists & inhibitors , Receptor, EphB2/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Chromatography, Affinity , Databases, Factual , Enzyme-Linked Immunosorbent Assay , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Mass Spectrometry , Models, Molecular , Molecular Weight , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Phosphorylation , Protein Structure, Tertiary , Quantitative Structure-Activity Relationship , Receptor, EphB2/metabolism , Sulfides/chemistry , Sulfides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...