Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38338467

ABSTRACT

The reaction of the vanadyl ion (VO2+) with imidazole-4-carboxylic acid (Im4COOH), imidazole-2-carboxylic acid (Im2COOH) and methylimidazole-2-carboxylic acid (MeIm2COOH), respectively, in the presence of small bioligands (bL) [oxalate (Ox), lactate (Lact), citrate (Cit) and phosphate (Phos)] and high-molecular-weight (HMW) human serum proteins [albumin (HSA) and transferrin (hTf)] were studied in aqueous solution using potentiometric acid-base titrations. The species distribution diagrams for the high-molecular-mass (HMM) proteins with oxidovanadium(IV) under physiological pH were dominated by VO(HMM)2, VOL(HMM) for unsubstituted ligands (L- = Im4COO- and Im2COO-). However, for the N-substituted MeIm2COOH, the species distribution diagrams under physiological pH were dominated by VOL2, VO(HMM)2 and VO2L2(HMM). These species were further confirmed by LC-MS, MALDI-TOF-MS and EPR studies. The glucose-stimulated insulin secretion (GSIS) action of the complexes was investigated using INS-1E cells at a 1 µM concentration, which was established through cytotoxicity studies via the MTT assay. The neutral complexes, especially VO(MeIm2COO)2, showed promising results in the stimulation of insulin secretion than the cationic [VO(MeIm2CH2OH)2]2+ complex and the vanadium salt. Oxidovanadium(IV) complexes reduced insulin stimulation significantly under normoglycaemic levels but showed positive effects on insulin secretion under hyperglycaemic conditions (33.3 mM glucose media). The islets exposed to oxidovanadium(IV) complexes under hyperglycaemic conditions displayed a significant increase in the stimulatory index with 1.19, 1.75, 1.53, 1.85, 2.20 and 1.29 observed for the positive control (sulfonylurea:gliclazide), VOSO4, VO(Im4COO)2, VO(Im2COO)2, VO(MeIm2COO)2 and VO(MeIm2CH2OH)22+, respectively. This observation showed a potential further effect of vanadium complexes towards type 2 diabetes and has been demonstrated for the first time in this study.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Humans , Insulin Secretion , Vanadium/pharmacology , Vanadium/chemistry , Glucose , Insulin/metabolism , Citric Acid , Imidazoles/chemistry
2.
J Inorg Biochem ; 145: 11-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25594947

ABSTRACT

A range of bidentate N,O-donor ligands of the imidazolyl-carboxylate moiety, which partially mimic naturally occurring bioligands, were prepared and reacted with the oxidovanadium(IV) ion to form the corresponding bis-coordinated oxidovanadium(IV) complexes. The aqueous pH-metric chemical speciation was investigated using glass electrode potentiometry, which allowed for the determination of protonation and stability constants of the ligands and complexes, respectively. The species distribution diagrams generated from this information gave evidence that the bis[(imidazolyl)carboxylato]oxovanadium(IV) complexes possess a broad pH-metric stability. The complexes improved glucose uptake in cell cultures using 3T3-L1 adipocytes, C2C12 muscle cells and Chang liver cells. The PTP inhibition studies indicated that the mechanism underlying insulin-stimulated glucose uptake was possibly via the protein tyrosine phosphorylation through the inhibition of the protein tyrosine phosphatase 1B (PTP 1B). The vanadium compounds also demonstrated the inhibition of D-dimer formation, suggesting that these compounds could potentially relieve a hypercoagulative state in diabetic patients.


Subject(s)
Coordination Complexes/pharmacology , Hydrogen-Ion Concentration , Hypoglycemic Agents/pharmacology , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Anticoagulants/pharmacology , Coordination Complexes/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Glucose/metabolism , Hypoglycemic Agents/chemistry , In Vitro Techniques , Mice , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL