Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Biocell ; 32(1): 27-31, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18669320

ABSTRACT

In the present study, the antioxidant capacity of vitamin C was examined in the liver and the kidney tissues of mice with or without ciprofloxacin (CFX) treatment. The antioxidant capacity of the vitamin was evaluated in terms of lipid hydroperoxides (LOOH) and thiobarbituric acid reactive substances (TBARs). The experimental design was 15 days of water (control and CFX groups) or vitamin C (vitamin C and vitamin C plus CFX groups) in drinking water. One dose of CFX was injected, 15 minutes before sacrifice, in the corresponding mice. The initial nmol of lipid hydroperoxides/g of tissue were 137 +/- 11 in the kidney and 145 +/- 15 in the liver, and the nmol of TBARs were 13 +/- 0.7 and 12 +/- 0.6, respectively. Pre-treatment with vitamin C reduced the levels of LOOH in the liver to 45 +/- 11 (p < 0.01) and vitamin C with CFX injection to 54 +/- 9 (p < 0.01). Vitamin C treatment also reduced the LOOH levels in the kidney roughly duplicated by CFX. Through the TBARs method we have not observed these effects. Quantification of LOOH is more sensitive than that of TBARs for estimating lipid peroxidation. CFX is used especially for urinary infections and can produce oxidative stress in the kidney. Pre-treatment with vitamin C may ameliorate this stress and also may improve the oxidative balance in the liver.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Kidney/drug effects , Liver/drug effects , Animals , Ciprofloxacin/pharmacology , Diet , Female , Kidney/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxides/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Thiobarbituric Acid Reactive Substances/metabolism
2.
Biocell ; 26(2): 225-8, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12240556

ABSTRACT

Ciprofloxacin (CFX) is an effective and relatively safe antimicrobial used in a variety of human infections. However, adverse drug reactions and positive results in genotoxic tests are reported. In order to understand the possible pathophysiological mechanisms of the toxic effects informed for CFX, lipid hydroperoxides (LOOH) -oxidative mediators of peroxidation- were quantified in liver and kidney of mice, after 15 to 360 minutes of the ciprofloxacin administration at doses of 10 mg/Kg or 100 mg/Kg by i.p. route. The peroxidation in the lipid fraction was evaluated by measuring the amount of hydroperoxides through the oxidation of 1-naphthyldiphenylphospine into its oxide and further quantification by high performance liquid chromatography. The initial content of lipid hydroperoxides (nmol/g tissue) was 253 +/- 3 in kidney and 143 +/- 12 in liver. CFX induced the maximal variation to 728 +/- 101 in kidney (P < 0.05) and 315 +/- 31 in liver (P < 0.01), after 15 min of 100 mg/Kg single dose. The variation in the LOOH levels was significant in kidney with both doses used and in liver after 100 mg/Kg until 60 min after the CFX administration, and then gradually fell to natural levels. The results demonstrated the effect of CFX on lipid oxidation, an indicator of oxidative effect. A natural protective capacity against this oxidation, more efficient in liver than in kidney, was observed.


Subject(s)
Ciprofloxacin/pharmacology , Kidney/metabolism , Lipid Peroxides/chemistry , Liver/metabolism , Animals , Anti-Infective Agents/pharmacology , Female , Kidney/drug effects , Lipid Peroxides/metabolism , Liver/drug effects , Male , Mice , Mice, Inbred BALB C , Models, Chemical , Oxygen/metabolism , Time Factors
3.
Biocell ; 26(2): 225-228, Aug. 2002.
Article in English | LILACS | ID: lil-335850

ABSTRACT

Ciprofloxacin (CFX) is an effective and relatively safe antimicrobial used in a variety of human infections. However, adverse drug reactions and positive results in genotoxic tests are reported. In order to understand the possible pathophysiological mechanisms of the toxic effects informed for CFX, lipid hydroperoxides (LOOH) -oxidative mediators of peroxidation- were quantified in liver and kidney of mice, after 15 to 360 minutes of the ciprofloxacin administration at doses of 10 mg/Kg or 100 mg/Kg by i.p. route. The peroxidation in the lipid fraction was evaluated by measuring the amount of hydroperoxides through the oxidation of 1-naphthyldiphenylphospine into its oxide and further quantification by high performance liquid chromatography. The initial content of lipid hydroperoxides (nmol/g tissue) was 253 +/- 3 in kidney and 143 +/- 12 in liver. CFX induced the maximal variation to 728 +/- 101 in kidney (P < 0.05) and 315 +/- 31 in liver (P < 0.01), after 15 min of 100 mg/Kg single dose. The variation in the LOOH levels was significant in kidney with both doses used and in liver after 100 mg/Kg until 60 min after the CFX administration, and then gradually fell to natural levels. The results demonstrated the effect of CFX on lipid oxidation, an indicator of oxidative effect. A natural protective capacity against this oxidation, more efficient in liver than in kidney, was observed.


Subject(s)
Animals , Male , Female , Mice , Ciprofloxacin , Liver/metabolism , Kidney , Lipid Peroxides/chemistry , Anti-Infective Agents , Liver/drug effects , Kidney , Mice, Inbred BALB C , Models, Chemical , Oxygen/metabolism , Lipid Peroxides/metabolism , Time Factors
4.
Biocell ; 26(2): 225-228, Aug. 2002.
Article in English | BINACIS | ID: bin-6468

ABSTRACT

Ciprofloxacin (CFX) is an effective and relatively safe antimicrobial used in a variety of human infections. However, adverse drug reactions and positive results in genotoxic tests are reported. In order to understand the possible pathophysiological mechanisms of the toxic effects informed for CFX, lipid hydroperoxides (LOOH) -oxidative mediators of peroxidation- were quantified in liver and kidney of mice, after 15 to 360 minutes of the ciprofloxacin administration at doses of 10 mg/Kg or 100 mg/Kg by i.p. route. The peroxidation in the lipid fraction was evaluated by measuring the amount of hydroperoxides through the oxidation of 1-naphthyldiphenylphospine into its oxide and further quantification by high performance liquid chromatography. The initial content of lipid hydroperoxides (nmol/g tissue) was 253 +/- 3 in kidney and 143 +/- 12 in liver. CFX induced the maximal variation to 728 +/- 101 in kidney (P < 0.05) and 315 +/- 31 in liver (P < 0.01), after 15 min of 100 mg/Kg single dose. The variation in the LOOH levels was significant in kidney with both doses used and in liver after 100 mg/Kg until 60 min after the CFX administration, and then gradually fell to natural levels. The results demonstrated the effect of CFX on lipid oxidation, an indicator of oxidative effect. A natural protective capacity against this oxidation, more efficient in liver than in kidney, was observed.(AU)


Subject(s)
Animals , Male , Female , Mice , RESEARCH SUPPORT, NON-U.S. GOVT , Ciprofloxacin/pharmacology , Kidney/metabolism , Lipid Peroxides/chemistry , Liver/metabolism , Anti-Infective Agents/pharmacology , Kidney/drug effects , Lipid Peroxides/metabolism , Liver/drug effects , Mice, Inbred BALB C , Models, Chemical , Oxygen/metabolism , Time Factors
5.
Biocell ; 26(2): 225-8, 2002 Aug.
Article in English | BINACIS | ID: bin-39153

ABSTRACT

Ciprofloxacin (CFX) is an effective and relatively safe antimicrobial used in a variety of human infections. However, adverse drug reactions and positive results in genotoxic tests are reported. In order to understand the possible pathophysiological mechanisms of the toxic effects informed for CFX, lipid hydroperoxides (LOOH) -oxidative mediators of peroxidation- were quantified in liver and kidney of mice, after 15 to 360 minutes of the ciprofloxacin administration at doses of 10 mg/Kg or 100 mg/Kg by i.p. route. The peroxidation in the lipid fraction was evaluated by measuring the amount of hydroperoxides through the oxidation of 1-naphthyldiphenylphospine into its oxide and further quantification by high performance liquid chromatography. The initial content of lipid hydroperoxides (nmol/g tissue) was 253 +/- 3 in kidney and 143 +/- 12 in liver. CFX induced the maximal variation to 728 +/- 101 in kidney (P < 0.05) and 315 +/- 31 in liver (P < 0.01), after 15 min of 100 mg/Kg single dose. The variation in the LOOH levels was significant in kidney with both doses used and in liver after 100 mg/Kg until 60 min after the CFX administration, and then gradually fell to natural levels. The results demonstrated the effect of CFX on lipid oxidation, an indicator of oxidative effect. A natural protective capacity against this oxidation, more efficient in liver than in kidney, was observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...