Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2075-2085, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38176018

ABSTRACT

Microbially induced calcium carbonate precipitation (MICP) has emerged as a novel technology with the potential to produce building materials through lower-temperature processes. The formation of calcium carbonate bridges in MICP allows the biocementation of aggregate particles to produce biobricks. Current approaches require several pulses of microbes and mineralization media to increase the quantity of calcium carbonate minerals and improve the strength of the material, thus leading to a reduction in sustainability. One potential technique to improve the efficiency of strength development involves trapping the bacteria on the aggregate surfaces using silane coupling agents such as positively charged 3-aminopropyl-methyl-diethoxysilane (APMDES). This treatment traps bacteria on sand through electrostatic interactions that attract negatively charged walls of bacteria to positively charged amine groups. The APMDES treatment promoted an abundant and immediate association of bacteria with sand, increasing the spatial density of ureolytic microbes on sand and promoting efficient initial calcium carbonate precipitation. Though microbial viability was compromised by treatment, urea hydrolysis was minimally affected. Strength was gained much more rapidly for the APMDES-treated sand than for the untreated sand. Three injections of bacteria and biomineralization media using APMDES-treated sand led to the same strength gain as seven injections using untreated sand. The higher strength with APMDES treatment was not explained by increased calcium carbonate accrual in the structure and may be influenced by additional factors such as differences in the microstructure of calcium carbonate bridges between sand particles. Overall, incorporating pretreatment methods, such as amine silane coupling agents, opens a new avenue in biomineralization research by producing materials with an improved efficiency and sustainability.


Subject(s)
Sand , Sporosarcina , Silanes , Bacteria , Carbonates , Calcium Carbonate/chemistry , Amines , Chemical Precipitation
2.
Bioelectrochemistry ; 153: 108486, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37302334

ABSTRACT

The bacterial anode is a key factor for microbial fuel cell (MFC) performance. This study examined the potential of kaolin (fine clay) to enhance bacteria and conductive particle attachment to the anode. The bio-electroactivity of MFCs based on a carbon-cloth anode modified by immobilization with kaolin, activated carbon, and Geobacter sulfurreducens (kaolin-AC), with only kaolin (kaolin), and a bare carbon-cloth (control) anodes were examined. When the MFCs were fed with wastewater, the MFCs based on the kaolin-AC, kaolin, and bare anodes produced a maximum voltage of 0.6 V, 0.4 V, and 0.25 V, respectively. The maximum power density obtained by the MFC based on the kaolin-AC anode was 1112 mW‧m-2 at a current density of 3.33 A‧m-2, 12% and 56% higher than the kaolin and the bare anodes, respectively. The highest Coulombic efficiency was obtained by the kaolin-AC anode (16%). The relative microbial diversity showed that Geobacter displayed the highest relative distribution of 64% in the biofilm of the kaolin-AC anode. This result proved the advantage of preserving the bacterial anode exoelectrogens using kaolin. To our knowledge, this is the first study evaluating kaolin as a natural adhesive for immobilizing exoelectrogenic bacteria to anode material in MFCs.


Subject(s)
Bioelectric Energy Sources , Bioelectric Energy Sources/microbiology , Charcoal , Kaolin , Electricity , Electrodes , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...