Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Wearable Technol ; 2: e14, 2021.
Article in English | MEDLINE | ID: mdl-38486636

ABSTRACT

The science and technology of wearable robots are steadily advancing, and the use of such robots in our everyday life appears to be within reach. Nevertheless, widespread adoption of wearable robots should not be taken for granted, especially since many recent attempts to bring them to real-life applications resulted in mixed outcomes. The aim of this article is to address the current challenges that are limiting the application and wider adoption of wearable robots that are typically worn over the human body. We categorized the challenges into mechanical layout, actuation, sensing, body interface, control, human-robot interfacing and coadaptation, and benchmarking. For each category, we discuss specific challenges and the rationale for why solving them is important, followed by an overview of relevant recent works. We conclude with an opinion that summarizes possible solutions that could contribute to the wider adoption of wearable robots.

2.
IEEE Int Conf Rehabil Robot ; 2019: 518-523, 2019 06.
Article in English | MEDLINE | ID: mdl-31374682

ABSTRACT

In this paper, we present a novel concept that can enable the human aware control of exoskeletons through the integration of a soft suit and a robotic exoskeleton. Unlike the state-of-the-art exoskeleton controllers which mostly rely on lumped human-robot models, the proposed concept makes use of the independent state measurements concerning the human user and the robot. The ability to observe the human state independently is the key factor in this approach. In order to realize such a system from the hardware point of view, we propose a system integration frame that combines a soft suit for human state measurement and a rigid exoskeleton for human assistance. We identify the technological requirements that are necessary for the realization of such a system with a particular emphasis on soft suit integration. We also propose a template model, named scissor pendulum, that may encapsulate the dominant dynamics of the human-robot combined model to synthesize a controller for human state regulation. A series of simulation experiments were conducted to check the controller performance. As a result, satisfactory human state regulation was attained, adequately confirming that the proposed system could potentially improve exoskeleton-aided applications.


Subject(s)
Exoskeleton Device , Lower Extremity/physiopathology , Postural Balance , Self-Help Devices , Wearable Electronic Devices , Humans
3.
IEEE Int Conf Rehabil Robot ; 2019: 605-610, 2019 06.
Article in English | MEDLINE | ID: mdl-31374697

ABSTRACT

In this paper, we present our research study concerning the design and development of an exoskeleton that aims to provide 3D walking support with minimum number of actuators. Following a prior simulation study, the joint configuration was primarily determined. In order for the exoskeleton to possess advanced characteristics, the following design criteria were investigated: i) all the actuators (hip/knee/ankle) were deployed around the waist area to decrease leg weight and improve wearability, ii) custom-built series elastic actuators were used to power system for high fidelity torque-controllability, iii) 3D walking support is potentially enabled with reduced power requirements. As a result, we built the first actual prototype to experimentally verify the aforementioned design specifications. Furthermore, the preliminary torque control experiments indicated the viability of torque control.


Subject(s)
Equipment Design , Exoskeleton Device , Lower Extremity/physiology , Robotics , Walking/physiology , Biomechanical Phenomena , Humans
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1481-1484, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30440673

ABSTRACT

In this paper, the shoulder glenohumeral displacement during the movement of the upper arm is studied. Four modeling approaches were examined and compared to estimate the humeral head elevation (vertical displacement) and translation (horizontal displacement). A biomechanics-inspired method was used firstly to model the glenohumeral displacement in which a least squares method was implemented for parameter identification. Then, three Gaussian process regression models were used in which the following variable sets were employed: i) shoulder adduction/abduction angle, ii) combination of shoulder adduction/abduction and flexion/extension angles, iii) overall upper arm orientation in the form of quaternions. In order to test the respective performances of these four models, we collected motion capture data and compared the models' representative capabilities. As a result, Gaussian process regression that considered the overall upper arm orientation outperformed the other modeling approaches; however, it should be noted that the other methods also provided accuracy levels that may be sufficient depending on task requirements.


Subject(s)
Arm/physiology , Shoulder Joint/physiology , Shoulder/physiology , Biomechanical Phenomena , Humans , Models, Biological , Movement , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...