Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37112341

ABSTRACT

With higher levels of automation in vehicles, the need for robust driver monitoring systems increases, since it must be ensured that the driver can intervene at any moment. Drowsiness, stress and alcohol are still the main sources of driver distraction. However, physiological problems such as heart attacks and strokes also exhibit a significant risk for driver safety, especially with respect to the ageing population. In this paper, a portable cushion with four sensor units with multiple measurement modalities is presented. Capacitive electrocardiography, reflective photophlethysmography, magnetic induction measurement and seismocardiography are performed with the embedded sensors. The device can monitor the heart and respiratory rates of a vehicle driver. The promising results of the first proof-of-concept study with twenty participants in a driving simulator not only demonstrate the accuracy of the heart (above 70% of medical-grade heart rate estimations according to IEC 60601-2-27) and respiratory rate measurements (around 30% with errors below 2 BPM), but also that the cushion might be useful to monitor morphological changes in the capacitive electrocardiogram in some cases. The measurements can potentially be used to detect drowsiness and stress and thus the fitness of the driver, since heart rate variability and breathing rate variability can be captured. They are also useful for the early prediction of cardiovascular diseases, one of the main reasons for premature death. The data are publicly available in the UnoVis dataset.


Subject(s)
Automobile Driving , Distracted Driving , Humans , Vital Signs , Heart Rate , Wakefulness
2.
IEEE Trans Biomed Circuits Syst ; 15(5): 949-959, 2021 10.
Article in English | MEDLINE | ID: mdl-34449392

ABSTRACT

Neonatal intensive care units provide vital medical support for premature infants. The key aspect in neonatal care is the continuous monitoring of vital signs measured using adhesive skin sensors. Since sensors can cause irritation of the skin and lead to infections, research focuses on contact-free, camera-based methods such as infrared thermography and photoplethysmography imaging. The development of image processing algorithms requires large datasets, but recording the necessary data from studies brings tremendous effort and costs. Therefore, realistic patient phantoms would be feasible to create a comprehensive dataset and validate image-based algorithms. This work describes the realization of a neonatal phantom which can simulate physiological vital parameters such as pulse rate and thermoregulation. It mimics the outer appearance of premature infants using a 3D printed base structure coated with several layers of modified, skin-colored silicone. A distribution of red and infrared LEDs in the scaffold enables the simulation of a PPG signal by mimicking pulsative light intensity changes on the skin. Additionally, the body temperature of the phantom is individually adjustable in several regions using heating elements. In the validation process for PPG simulation, the feasibility of setting different pulse frequencies and the variation of oxygen saturation levels was obtained. Furthermore, heating tests showed region-dependent temperature variations between 0.19 °C and 0.81 °C around the setpoint. In conclusion, the proposed neonatal phantom can be used to simulate a variety of vital parameters of preterm infants and, therefore, enables the implementation of image processing algorithms for the analysis of the medical state.


Subject(s)
Infant, Premature , Phantoms, Imaging , Photoplethysmography , Vital Signs , Heart Rate , Humans , Infant, Newborn , Oxygen Saturation
3.
Sensors (Basel) ; 20(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158273

ABSTRACT

The capacitive electrocardiograph (cECG) has been tested for several measurement scenarios, including hospital beds, car seats and chairs since it was first proposed. The inferior signal quality of the cECG compared to the gold standard ECG guides the ongoing research in the direction of out-of-hospital applications, where unobtrusiveness is sought and high-level diagnostic signal quality is not essential. This study aims to expand the application range of cECG not in terms of the measurement scenario but in the profile of the subjects by including subjects with implanted cardiac pacemakers. Within this study, 20 patients with cardiac pacemakers were recruited during their clinical device follow-up and cECG measurements were conducted using a seat equipped with integrated cECG electrodes. The multichannel cECG recordings of active unipolar and bipolar pacemaker stimulation were analyzed offline and evaluated in terms of Fß scores using a pacemaker spike detection algorithm. Fß scores from 3652 pacing events, varying from 0.62 to 0.78, are presented with influencing parameters in the algorithm and the comparison of cECG channels. By tuning the parameters of the algorithm, different ranges of Fß scores were found as 0.32 to 0.49 and 0.78 to 0.88 for bipolar and unipolar stimulations, respectively. For the first time, this study shows the feasibility of a cECG system allowing health monitoring in daily use on subjects wearing cardiac pacemakers.


Subject(s)
Automobiles , Electrocardiography , Electrodes , Monitoring, Physiologic/instrumentation , Pacemaker, Artificial , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...