Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Enzyme Inhib Med Chem ; 34(1): 1388-1399, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31392901

ABSTRACT

Fourteen novel dipeptide carboxamide derivatives bearing benzensulphonamoyl propanamide were synthesized and characterized using 1H NMR, 13C NMR, FTIR and MS spectroscopic techniques. In vivo antimalarial and in vitro antimicrobial studies were carried out on these synthesized compounds. Molecular docking, haematological analysis, liver and kidney function tests were also evaluated to assess the effect of the compounds on the organs. At 200 mg/kg body weight, 7i inhibited the multiplication of the parasite by 81.38% on day 12 of post-treatment exposure. This was comparable to the 82.34% reduction with artemisinin. The minimum inhibitory concentration (MIC) in µM ranged from 0.03 to 2.34 with 7h having MIC of 0.03 µM against Plasmodium falciparium. The in vitro antibacterial activity of the compounds against some clinically isolated bacteria strains showed varied activities with some of the new compounds showing better activities against the bacteria and the fungi more than the reference drug ciprofloxacin and fluconazole.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Dipeptides/chemistry , Dipeptides/pharmacology , Sulfonamides/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antimalarials/chemical synthesis , Bacteria/drug effects , Dipeptides/chemical synthesis , Fungi/drug effects , Mice , Microbial Sensitivity Tests , Parasitic Sensitivity Tests , Plasmodium falciparum/drug effects , Rats , Sulfonamides/chemistry
2.
Eur J Med Chem ; 135: 349-369, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28460310

ABSTRACT

Sulphonamides and carboxamides have shown large number of pharmacological properties against different types of diseases among which is malaria. Twenty four new carboxamide derivatives bearing benzenesulphonamoyl alkanamides were synthesized and investigated for their in silico and in vitro antimalarial and antioxidant properties. The substituted benzenesulphonyl chlorides (1a-c) were treated with various amino acids (2a-h) to obtain the benzenesulphonamoyl alkanamides (3a-x) which were subsequently treated with benzoyl chloride to obtain the N-benzoylated derivatives (5a-f, i-n and q-v). Further reactions of the N-benzoylated derivatives or proline derivatives with 4-aminoacetophenone (6) using boric acid as a catalyst gave the sulphonamide carboxamide derivatives (7a-x) in excellent yields. The in vitro antimalarial studies showed that all synthesized compounds had antimalarial property. Compound 7k, 7c, 7l, 7s, and 7j had mean MIC value of 0.02, 0.03, 0.05, 0.06 and 0.08 µM respectively comparable with chloroquine 0.06 µM. Compound 7c was the most potent antioxidant agent with IC50 value of 0.045 mM comparable with 0.34 mM for ascorbic acid. In addition to the successful synthesis of the target molecules using boric acid catalysis, the compounds were found to have antimalarial and antioxidant activities comparable with known antimalarial and antioxidant drugs. The class of compounds reported herein have the potential of reducing oxidative stress arising from malaria parasite and chemotherapeutic agent used in the treatment of malaria.


Subject(s)
Antimalarials/pharmacology , Malaria/drug therapy , Molecular Docking Simulation , Plasmodium falciparum/drug effects , Sulfonamides/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Sulfonamides/chemistry
3.
Int J Med Chem ; 2014: 614808, 2014.
Article in English | MEDLINE | ID: mdl-25610646

ABSTRACT

The unusual structure and chemical composition of the mycobacterial cell wall, the tedious duration of therapy, and resistance developed by the microorganism have made the recurrence of the disease multidrug resistance and extensive or extreme drug resistance. The prevalence of tuberculosis in synergy with HIV/AIDS epidemic augments the risk of developing the disease by 100-fold. The need to synthesize new drugs that will shorten the total duration of effective treatment and/or significantly reduce the dosage taken under DOTS supervision, improve on the treatment of multidrug-resistant tuberculosis which defies the treatment with isoniazid and rifampicin, and provide effective treatment for latent TB infections which is essential for eliminating tuberculosis prompted this review. In this review, we considered the synthesis and structure activity relationship study of carboxamide derivatives with antitubercular potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...