Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(5): e16266, 2023 May.
Article in English | MEDLINE | ID: mdl-37251883

ABSTRACT

Ca and Mg have been implicated in causing hardness in beans resulting in relatively long cooking time. This study used potassium to replace the cations and determined the adsorption of potassium solution to bean seeds. Then, plantain peel, a natural source of potassium, was used to cook beans and its impact on the cooking time of beans was investigated. The adsorption experiments were performed using batch technique, while metal compositions of the bean seeds and plantain peel were determined by spectroscopy. Optimum removal conditions of potassium ion biosorption using bean seeds were observed at pH 10.2, 2 g bean seed dosage, 180 min agitation time, with 75 ppm as initial metal concentration. The kinetic model correlate with pseudo-second order reaction and the Langmuir adsorption model best fitted the adsorption. After cooking the beans with plantain peel, the concentration of Mg reduced in the bean seeds by about 48%, while the concentration of Ca reduced by about 22%, but the concentration of K increased by over 200% in the cooked bean seeds. Beans treated with plantain peel cooked earlier than the control experiment. This may be affected by pH, adsorbent dosage, metal concentration and contact time.

2.
Environ Geochem Health ; 40(1): 359-373, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28185220

ABSTRACT

PAHs are pollutants of serious environmental and human health concerns. PAH studies in environmental compartments may assist in designing PAH control measures. The levels of selected PAHs in surface sediment samples of a stream near a mining site at Okobo-Enjema, Nigeria, were investigated. The data were used to determine the possible sources of the PAHs and to assess the potential health risk of the PAHs to humans which was evaluated based on the sediment quality, contamination level and cancer risk guidelines. Sediment samples were collected in replicates at various locations in the stream. A mixture of acetone, dichloromethane and n-hexane was used to extract the PAH compounds by sonication. The extracts were cleaned-up, concentrated and quantitatively analyzed using gas chromatography-mass spectrometry. The results indicated 14, 10 and 4 out of the 16 target PAHs were detected at various sampling stations. The total concentrations of the PAHs ranged from 0.09 to 1.2 mg/kg dry weight. High molecular weight PAHs dominated over the low molecular weight compounds at distances nearer to the coal mine. The PAH contamination came from pyrogenic and petrogenic sources. The results suggested that there was no eco-toxicological risk for organisms in the sediments beyond 400 m from the coal mine. The sediments were highly contaminated at ≤400 m from the coal mine; moderately contaminated at between 400 and 500 m from the mine; and lowly contaminated at beyond 500 m from the mine. The cancer risk is low on ingestion and skin contact with the sediments.


Subject(s)
Geologic Sediments/chemistry , Mining , Polycyclic Aromatic Hydrocarbons/analysis , Gas Chromatography-Mass Spectrometry , Humans , Molecular Weight , Nigeria , Risk Assessment , Rivers , Surface Properties , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...