Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 25(37): 375702, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25148299

ABSTRACT

Ion-beam-induced deposition (IBID) and electron-beam-induced deposition (EBID) with tungsten (W) are evaluated for engineering electrical contacts with carbon nanofibers (CNFs). While a different tungsten-containing precursor gas is utilized for each technique, the resulting tungsten deposits result in significant contact resistance reduction. The performance of CNF devices with W contacts is examined and conduction across these contacts is analyzed. IBID-W, while yielding lower contact resistance than EBID-W, can be problematic in the presence of on-chip semiconducting devices, whereas EBID-W provides substantial contact resistance reduction that can be further improved by current stressing. Significant differences between IBID-W and EBID-W are observed at the electrode contact interfaces using high-resolution transmission electron microscopy. These differences are consistent with the observed electrical behaviors of their respective test devices.

2.
J Nanosci Nanotechnol ; 7(11): 3731-5, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18047047

ABSTRACT

We demonstrated that the diameter and the density of carbon nanotubes (CNTs) which had a close relation to electric-field-screening effect could be easily changed by the control of catalytic Ni thickness combined with NH3 plasma pretreatment. Since the diameter and the density of CNTs had a tremendous impact on the field-emission characteristics, optimized thickness of catalyst and application of plasma pretreatment greatly improved the emission efficiency of CNTs. In the field emission test using diode-type configuration, well-dispersed thinner CNTs exhibited lower turn-on voltage and higher field enhancement factor than the densely-packed CNTs. A CNT film grown using a plasma-pretreated 25 angstroms-thick Ni catalyst showed excellent field emission characteristics with a very low turn-on field of 1.1 V/microm @ 10 microA/cm2 and a high emission current density of 1.9 mA/cm2 @ 4.0 V/microm, respectively.


Subject(s)
Crystallization/methods , Electrochemistry/methods , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Catalysis , Electromagnetic Fields , Gases/chemistry , Hot Temperature , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Scattering, Radiation , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...