Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Nanomedicine ; 19: 4103-4120, 2024.
Article in English | MEDLINE | ID: mdl-38736658

ABSTRACT

Introduction: Gold nanoparticles are promising candidates as vehicles for drug delivery systems and could be developed into effective anticancer treatments. However, concerns about their safety need to be identified, addressed, and satisfactorily answered. Although gold nanoparticles are considered biocompatible and nontoxic, most of the toxicology evidence originates from in vitro studies, which may not reflect the responses in complex living organisms. Methods: We used an animal model to study the long-term effects of 20 nm spherical AuNPs coated with bovine serum albumin. Mice received a 1 mg/kg single intravenous dose of nanoparticles, and the biodistribution and accumulation, as well as the organ changes caused by the nanoparticles, were characterized in the liver, spleen, and kidneys during 120 days. Results: The amount of nanoparticles in the organs remained high at 120 days compared with day 1, showing a 39% reduction in the liver, a 53% increase in the spleen, and a 150% increase in the kidneys. The biological effects of chronic nanoparticle exposure were associated with early inflammatory and fibrotic responses in the organs and were more pronounced in the kidneys, despite a negligible amount of nanoparticles found in renal tissues. Conclusion: Our data suggest, that although AuNPs belong to the safest nanomaterial platforms nowadays, due to their slow tissue elimination leading to long-term accumulation in the biological systems, they may induce toxic responses in the vital organs, and so understanding of their long-term biological impact is important to consider their potential therapeutic applications.


Subject(s)
Gold , Kidney , Liver , Metal Nanoparticles , Serum Albumin, Bovine , Spleen , Animals , Gold/chemistry , Gold/pharmacokinetics , Gold/toxicity , Gold/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/administration & dosage , Spleen/drug effects , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/pharmacokinetics , Kidney/drug effects , Kidney/metabolism , Tissue Distribution , Liver/drug effects , Liver/metabolism , Mice , Male , Particle Size
2.
Nanomaterials (Basel) ; 13(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36839135

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) are used in a wide range of applications. Although inhalation of NPs is one of the most important toxicologically relevant routes, experimental studies on potential harmful effects of TiO2 NPs using a whole-body inhalation chamber model are rare. In this study, the profile of lymphocyte markers, functional immunoassays, and antioxidant defense markers were analyzed to evaluate the potential adverse effects of seven-week inhalation exposure to two different concentrations of TiO2 NPs (0.00167 and 0.1308 mg TiO2/m3) in mice. A dose-dependent effect of TiO2 NPs on innate immunity was evident in the form of stimulated phagocytic activity of monocytes in low-dose mice and suppressed secretory function of monocytes (IL-18) in high-dose animals. The effect of TiO2 NPs on adaptive immunity, manifested in the spleen by a decrease in the percentage of T-cells, a reduction in T-helper cells, and a dose-dependent decrease in lymphocyte cytokine production, may indicate immunosuppression in exposed mice. The dose-dependent increase in GSH concentration and GSH/GSSG ratio in whole blood demonstrated stimulated antioxidant defense against oxidative stress induced by TiO2 NP exposure.

3.
Front Immunol ; 13: 874253, 2022.
Article in English | MEDLINE | ID: mdl-35547729

ABSTRACT

Copper oxide nanoparticles (CuO NPs) are increasingly used in various industry sectors. Moreover, medical application of CuO NPs as antimicrobials also contributes to human exposure. Their toxicity, including toxicity to the immune system and blood, raises concerns, while information on their immunotoxicity is still very limited. The aim of our work was to evaluate the effects of CuO NPs (number concentration 1.40×106 particles/cm3, geometric mean diameter 20.4 nm) on immune/inflammatory response and antioxidant defense in mice exposed to 32.5 µg CuO/m3 continuously for 6 weeks. After six weeks of CuO NP inhalation, the content of copper in lungs and liver was significantly increased, while in kidneys, spleen, brain, and blood it was similar in exposed and control mice. Inhalation of CuO NPs caused a significant increase in proliferative response of T-lymphocytes after mitogenic stimulation and basal proliferative activity of splenocytes. CuO NPs significantly induced the production of IL-12p70, Th1-cytokine IFN-γ and Th2-cytokines IL-4, IL-5. Levels of TNF-α and IL-6 remained unchanged. Immune assays showed significantly suppressed phagocytic activity of granulocytes and slightly decreased respiratory burst. No significant differences in phagocytosis of monocytes were recorded. The percentage of CD3+, CD3+CD4+, CD3+CD8+, and CD3-CD19+ cell subsets in spleen, thymus, and lymph nodes did not differ between exposed and control animals. No changes in hematological parameters were found between the CuO NP exposed and control groups. The overall antioxidant protection status of the organism was expressed by evaluation of GSH and GSSG concentrations in blood samples. The experimental group exposed to CuO NPs showed a significant decrease in GSH concentration in comparison to the control group. In summary, our results indicate that sub-chronic inhalation of CuO NPs can cause undesired modulation of the immune response. Stimulation of adaptive immunity was indicated by activation of proliferation and secretion functions of lymphocytes. CuO NPs elicited pro-activation state of Th1 and Th2 lymphocytes in exposed mice. Innate immunity was affected by impaired phagocytic activity of granulocytes. Reduced glutathione was significantly decreased in mice exposed to CuO NPs.


Subject(s)
Copper , Nanoparticles , Adaptive Immunity , Animals , Antioxidants , Copper/toxicity , Cytokines , Mice , Nanoparticles/toxicity , Oxides
4.
Biol Trace Elem Res ; 200(2): 624-634, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33656659

ABSTRACT

Osteoporosis is a growing public health issue for an aging society. Previous studies have found both beneficial and detrimental effects of obesity on bone health. The purpose of this study was to investigate the impact of estrogen deficiency and physical activity on bone and blood concentrations of macrominerals (Ca, P, and Mg) and microminerals (Zn, Se, Cu, and Fe) in a high-fat diet-induced obesity rat model. Forty-eight female Wistar rats were divided into six groups: sham-operated and ovariectomized rats that received a standard diet (SD), high-fat diet (HFD), or HFD accompanied by physical exercise. The effect of ovariectomy on bone minerals varied with diet. Ovariectomy significantly decreased femoral Ca and Mg in sedentary rats receiving a SD; femoral Se, Cu, Zn, and Fe in sedentary rats on HFD; and plasma Fe in both sedentary rats on SD and exercising rats on HFD. The interaction of ovariectomy and diet had the strongest impact on Mg and Se concentrations in femur. In ovariectomized rats, HFD showed to have a protective effect on bone mineralization (femoral Ca and Mg), and a negative one on antioxidant microminerals (femoral Se, Cu, and Zn). Physical activity reduced the decline of Se, Cu, Zn, and Fe in the femur of ovariectomized rats on HFD. In the current state of knowledge, it is difficult to suggest if decreased femoral levels of antioxidant microminerals may contribute to the pathophysiology of osteoporosis in obese individuals or just reflect the mineral status in the body.


Subject(s)
Diet, High-Fat , Obesity , Animals , Bone Density , Diet, High-Fat/adverse effects , Female , Humans , Minerals , Ovariectomy , Rats , Rats, Wistar
5.
Food Chem Toxicol ; 136: 110954, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31707033

ABSTRACT

Due to the growing number of applications of cadmium oxide nanoparticles (CdO NPs), there is a concern about their potential deleterious effects. The objective of our study was to investigate the effect of CdO NPs on the immune response, renal and intestine oxidative stress, blood antioxidant defence, renal fibrotic response, bone density and mineral content. Six-week-old female ICR mice were exposed to CdO NPs for 6 weeks by inhalation (particle size: 9.82 nm, mass concentration: 31.7 µg CdO/m3, total deposited dose: 0.195 µg CdO/g body weight). CdO NPs increased percentage of thymus CD3e+CD8a+ cells and moderately enhanced splenocyte proliferation and production of cytokines and chemokines. CdO NPs elevated pro-fibrotic factors (TGF-ß2, α-SMA and collagen I) in the kidney, and concentrations of AGEs in the intestine. The ratio of GSH and GSSG in blood was slightly reduced. Exposure to CdO NPs resulted in 10-fold higher Cd concentration in tibia bones. No differences were found in bone mass density, mineral content, bone area values, bone concentrations of Ca, P, Mg and Ca/P ratio. Our findings indicate stimulation of immune/inflammatory response, oxidative stress in the intestine, starting fibrotic response in kidneys and accumulation of CdO NPs in bones of mice.


Subject(s)
Cadmium Compounds/toxicity , Fibrosis/chemically induced , Immunity, Cellular/drug effects , Metal Nanoparticles/toxicity , Oxidative Stress/drug effects , Oxides/toxicity , Tibia/drug effects , Administration, Inhalation , Animals , Cadmium Compounds/administration & dosage , Cytokines/metabolism , Female , Intestines/drug effects , Kidney/drug effects , Kidney/pathology , Lymph Nodes/drug effects , Metal Nanoparticles/administration & dosage , Mice, Inbred ICR , Oxides/administration & dosage , Spleen/drug effects , Thymus Gland/drug effects
6.
Article in English | MEDLINE | ID: mdl-31561890

ABSTRACT

Progressive expansion of nanomaterials in our everyday life raises concerns about their safety for human health. Although kidneys are the primary organs of xenobiotic elimination, little attention has been paid to the kidneys in terms of nanotoxicological studies up to now. Here we investigate the cytotoxic and genotoxic potential of four solid-core uncoated inorganic nanoparticles (TiO2NPs, SiO2NPs, Fe3O4NPs and AuNPs) using the human renal proximal tubule epithelial TH1 cells. To mimic the in vivo conditions more realistic, TH1 cells were exposed in vitro to inorganic NPs under static as well as dynamic conditions for 3 h and 24 h. The medium throughput alkaline comet assay (12 minigels per slide) was employed to evaluate the impact of these NPs on genome integrity and their capacity to produce oxidative lesions to DNA. The accumulation and localization of studied inorganic NPs inside the cells was monitored by transmission electron microscopy (TEM) and the efficacy of internalization of particular NPs was determined by atomic absorption spectroscopy (AAS) and inductively coupled plasma mass spectrometry (ICP-MS). From all the tested NPs, only Fe3O4NPs induced a slight cytotoxicity in TH1 cells exposed to high concentrations (>700 µg/ml) for 24 h. On the other hand, the inorganic NPs did not increase significantly the level of DNA strand breaks or oxidative DNA damage regardless of the treatment mode (static vs. dynamic conditions). Interestingly, substantial differences were observed in the internalized amount of inorganic NPs in TH1 cells exposed to equivalent (2.2 µg/ml) concentration. Fe3O4NPs were most efficiently taken up while the lowest quantity of particles was determined in TiO2NPs-treated cells. As the particle size and shape of individual inorganic NPs in culture medium was nearly identical, it is reasonable to suppose that the chemical composition may contribute to the differences in the efficacy of NPs uptake.


Subject(s)
Epithelial Cells/drug effects , Kidney Tubules, Proximal/drug effects , Metal Nanoparticles/toxicity , Th1 Cells/drug effects , Comet Assay , DNA Breaks , DNA Damage , Dynamic Light Scattering , Gold/toxicity , Humans , Kidney Tubules, Proximal/cytology , Magnetite Nanoparticles/toxicity , Oxidative Stress , Phagocytosis , Rheology , Silicon Dioxide/toxicity , Single-Cell Analysis , Time Factors , Titanium/toxicity
7.
Nanotoxicology ; 13(4): 510-526, 2019 05.
Article in English | MEDLINE | ID: mdl-30704361

ABSTRACT

Innovative nanotechnology aims to develop particles that are small, monodisperse, smart, and do not cause unintentional side effects. Uniform magnetic Fe3O4 nanoparticles (12 nm in size) were prepared by thermal decomposition of iron(III) oleate. To make them colloidally stable and dispersible in water and cell culture medium, they were modified with phosphonic acid- (PA) and hydroxamic acid (HA)-terminated poly(ethylene glycol) yielding PA-PEG@Fe3O4 and HA-PEG@Fe3O4 nanoparticles; conventional γ-Fe2O3 particles were prepared as a control. Advanced techniques were used to evaluate the properties and safety of the particles. Completeness of the nanoparticle coating was tested by real-time polymerase chain reaction. Interaction of the particles with primary human peripheral blood cells, cellular uptake, cytotoxicity, and immunotoxicity were also investigated. Amount of internalized iron in peripheral blood mononuclear cells was 72, 38, and 25 pg Fe/cell for HA-PEG@Fe3O4, γ-Fe2O3, and PA-PEG@Fe3O4, respectively. Nanoparticles were localized within the cytoplasm and in the extracellular space. No cytotoxic effect of both PEGylated nanoparticles was observed (0.12-75 µg/cm2) after 24 and 72-h incubation. Moreover, no suppressive effect was found on the proliferative activity of T-lymphocytes and T-dependent B-cell response, phagocytic activity of monocytes and granulocytes, and respiratory burst of phagocytes. Similarly, no cytotoxic effect of γ-Fe2O3 particles was observed. However, they suppressed the proliferative activity of T-lymphocytes (75 µg/cm2, 72 h) and also decreased the phagocytic activity of monocytes (15 µg/cm2, 24 h; 3-75 µg/cm2, 72 h). We thus show that newly developed particles have great potential especially in cancer diagnostics and therapy.


Subject(s)
Cell Proliferation/drug effects , Leukocytes, Mononuclear/drug effects , Magnetite Nanoparticles/toxicity , Nanomedicine/methods , Cell Survival/drug effects , Cell Survival/immunology , Cells, Cultured , Cytokines/metabolism , Humans , Hydroxamic Acids/chemistry , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/pathology , Magnetite Nanoparticles/chemistry , Particle Size , Phagocytosis/drug effects , Phagocytosis/immunology , Phosphorous Acids/chemistry , Polyethylene Glycols/chemistry , Respiratory Burst/drug effects , Respiratory Burst/immunology , Surface Properties
8.
Biol Trace Elem Res ; 191(1): 16-26, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30499063

ABSTRACT

The aim of this study was to investigate the influence of low fish consumption on prenatal and early postnatal exposure to mercury species. The samples of umbilical cord blood and maternal milk as well as interviewer-administered questionnaires were collected from 142 Slovak mother-child pairs. The mean total mercury (THg) concentrations in cord blood and milk were 0.949 µg/L and 0.376 µg/kg, respectively. The mean methylmercury (MeHg) concentration in cord blood was 0.504 µg/L. Fish eaters had significantly higher cord blood MeHg concentrations than non-fish eaters (p = 0.030); no difference was found in milk or cord blood THg concentrations. The bivariate analysis showed a positive correlation between cord blood MeHg and consumption of sea fish and shellfish (rs = 0.320, p < 0.001); after adjustment for the potential confounders, the association was weakened (ß = 0.173, p = 0.059). Nevertheless, the decision tree method showed sea fish and shellfish consumption to be the best predictor of cord blood MeHg. Furthermore, a negative association was found between THg concentrations in maternal milk and freshwater fish consumption (ß = - 0.193, p = 0.017), which might indicate a beneficial effect of freshwater fish consumption. The results suggest there is a need for future research to investigate the benefits versus the adverse effects of low maternal fish consumption on child development.


Subject(s)
Fish Products , Maternal Exposure/adverse effects , Mercury/toxicity , Methylmercury Compounds/toxicity , Prenatal Exposure Delayed Effects , Shellfish , Surveys and Questionnaires , Adult , Child, Preschool , Female , Fish Products/adverse effects , Fish Products/analysis , Humans , Infant , Infant, Newborn , Male , Pregnancy , Prospective Studies , Shellfish/adverse effects , Shellfish/analysis
9.
Biol Trace Elem Res ; 169(1): 1-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26063047

ABSTRACT

Attention-deficit hyperactivity disorder (ADHD) is associated with alterations in the metabolism of some trace elements which may participate in the pathogenesis of this disorder. The aims of the present study were to investigate the trace element status (copper (Cu), zinc (Zn), copper to zinc ratio (Cu/Zn ratio), selenium (Se), and lead (Pb)) of ADHD children and compare them with the control group. Associations between examined elements and ratings of ADHD symptoms were also assessed. Fifty-eight ADHD children and 50 healthy children (aged 6-14 years) were included in the study. The concentrations of Cu, Zn, and Se in the plasma and Pb in the whole blood were measured by atomic absorption spectrometry. We found lower Zn level (p = 0.0005) and higher Cu/Zn ratio (p = 0.015) in ADHD children when compared with the control group. Copper levels in ADHD children were higher than those in the control group, but not significantly (p > 0.05). No significant differences in levels of Se and Pb between both groups were found. Zinc levels correlated with parent-rated score for inattention (r = -0.231, p = 0.029) as well as with teacher-rated score for inattention (r = -0.328, p = 0.014). Cu/Zn ratio correlated with teacher-rated score for inattention (r = 0.298, p = 0.015). Significant associations of Se and Pb with parent- and teacher-rated symptoms were not observed. The results of this study indicate that there are alterations in plasma levels of Cu and Zn as well as significant relationships to symptoms of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/blood , Attention Deficit Disorder with Hyperactivity/pathology , Copper/blood , Zinc/blood , Adolescent , Child , Faculty , Female , Humans , Male , Parents
11.
Biol Trace Elem Res ; 148(3): 281-91, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22426797

ABSTRACT

The aim of this study was to investigate total mercury (THg) and methylmercury (MeHg) exposure of 75 mother-child pairs in relation to their thyroid hormone status (thyroid-stimulating hormone (TSH), triiodothyronine (T3), free triiodothyronine (fT3), thyroxine (T4), and free thyroxine (fT4)). THg and MeHg in blood samples were measured by atomic absorption spectrometry and gas chromatography-inductively coupled plasma-mass spectrometry, respectively. The median THg and MeHg levels in maternal blood, cord blood, and blood of 6-month-old children were 0.50, 0.53, and 0.32 and 0.22, 0.32, and 0.08 µg/L, respectively. There were significant correlations between paired maternal-cord blood levels for THg and MeHg, with a greater transplacental transport of MeHg compared with THg (mean cord/maternal blood ratio, 1.80 vs. 1.24). The maternal blood THg was found to be a better predictor of TSH levels in children than their current THg exposure. There was a positive correlation between maternal THg and children's TSH. T3 and fT3 levels in children were negatively related to cord blood THg in the majority (Caucasian) subgroup, whereas these associations were positive in the Roma subgroup. Mothers with dental amalgam fillings had significantly lower T4 and fT4 levels. Moreover, fT4 in the mothers of boys negatively correlated with maternal THg levels. MeHg exposure lowered T3 levels in the mothers of girls. Our results suggest that low-level exposure to Hg can affect thyroid hormone status during prenatal and early postnatal exposure depending on the form of Hg, gender, ethnicity, lifestyle, or socioeconomic status (dental amalgam fillings).


Subject(s)
Mercury/blood , Methylmercury Compounds/blood , Thyroid Hormones/blood , Adolescent , Adult , Environmental Exposure/adverse effects , Female , Humans , Infant, Newborn , Male , Mercury/toxicity , Methylmercury Compounds/toxicity , Thyrotropin/blood , Thyroxine/blood , Triiodothyronine/blood , Young Adult
12.
Cent Eur J Public Health ; 19(3): 158-64, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22026293

ABSTRACT

Slovakia is characterised by an unusually high number of patients affected by genetic Creutzfeldt-Jakob disease (CJD) with E200K mutation at the PRNP gene. Penetrance of the mutation is incomplete (59%). Therefore, for the onset of the clinical manifestation, an influence of other endo- or exogenous factors could not be excluded. Experimental data suggest that copper and manganese levels may play an important role in the pathogenesis of prion diseases. The highest number of Slovak genetic CJD patients originates from Orava - the northern region of central Slovakia. Manganese is a dominant pollutant in Orava. The objective of this study was to clarify a possible exogenous influence of environmental Mn/Cu imbalance on the CJD clustering. Mn and Cu levels were analysed in the brain tissue of genetic CJD cases (from Orava and from control regions of Slovakia), as well as of sporadic CJD patients and controls. Analyses demonstrate i) significantly higher Mn level in focally accumulated, "clustering" genetic CJD cases in comparison to all other groups, ii) Cu status differences between compared groups were without statistical significance; decreased concentrations were found in genetic cases from extrafocal genetic CJD areas, iii) Mn/Cu ratios were increased in all CJD groups in comparison to controls. Metal ratios in clustering gCJD cases were significantly higher in comparison to sporadic cases and also to controls, but not to the extrafocal genetic CJD subgroup. These results indicate that more important than increasing Mn level in pathogenesis of CJD appears to be the role of the Mn/Cu imbalance in the CNS. The imbalance observed in the cluster of genetic CJD cases is probably a result of both: the excessive environmental Mn level and the disturbance of Mn/Cu ratios in the Orava region. Presented findings indicate an environmental Mn/Cu imbalance as a possible exogenous CJD risk co-factor which may, in coincidence with endogenous (genetic) CJD risk, contribute to the focal accumulation (cluster) of genetic CJD in Slovakia.


Subject(s)
Copper/adverse effects , Creutzfeldt-Jakob Syndrome/etiology , Environmental Exposure/adverse effects , Manganese/adverse effects , Brain Chemistry , Case-Control Studies , Cluster Analysis , Copper/analysis , Creutzfeldt-Jakob Syndrome/epidemiology , Creutzfeldt-Jakob Syndrome/genetics , Geography , Humans , Manganese/analysis , Polymerase Chain Reaction , Polymorphism, Genetic , Prion Proteins , Prions/genetics , Risk Factors , Slovakia/epidemiology
13.
Biomed Pharmacother ; 2009 Oct 20.
Article in English | MEDLINE | ID: mdl-19875267

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

14.
Int J Environ Health Res ; 17(6): 419-28, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18027195

ABSTRACT

The objective of the study was to investigate the possible role of manganese and copper (Mn/Cu) imbalance of the food chain in the focally increased occurrence of Creutzfeldt-Jakob disease (CJD). Mn and Cu concentrations in soil, drinking water and foodstuffs collected from households in the region of focal accumulation of CJD patients and the control region were measured by FAAS. Considerably higher Mn/Cu ratios in the studied region than those in the control region were found for soil (49.3 vs. 21.1), honey (8.05 vs. 4.86), and for the main local food items: potatoes (2.09 vs. 1.07) and bread (5.85 vs. 5.35), however, only soil and potatoes were of statistical significance. The results could indicate a rare coincidence of the verified endogenous CJD risk (genetic) with a very probable exogenous CJD risk factor (Mn/Cu dietary/environmental imbalance), but whether and how this coincidence may contribute to the unique, continual temporo-spatial clustering of genetic CJD should be investigated in further studies.


Subject(s)
Copper/analysis , Creutzfeldt-Jakob Syndrome/epidemiology , Food Contamination/analysis , Manganese/analysis , Copper/adverse effects , Food Chain , Humans , Manganese/adverse effects , Risk Factors , Slovakia/epidemiology , Soil Pollutants/adverse effects , Soil Pollutants/analysis , Spectrophotometry, Atomic/methods , Water Pollutants, Chemical/adverse effects , Water Pollutants, Chemical/analysis
15.
Environ Health Perspect ; 114(12): 1813-7, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17185268

ABSTRACT

BACKGROUND: As the next generation of scientists enters the field of environmental health, it is imperative that they view their contributions in the context of global environmental stewardship. In this commentary, a group of international graduate students facilitated by three experienced environmental health scientists present their views on what they consider to be the global environmental health concerns of today. This group convened initially in October 2004 at an international health conference in Prague, Czech Republic. OBJECTIVES: In this report we identify perceived environmental health concerns that exist around the world, with a focus on Central and Eastern Europe. Additionally, we address these perceived problems and offers some potential solutions. DISCUSSION: At the meeting, students were invited to participate in two panel discussions. One group of young international scientists identified several significant global environmental health concerns, including air pollution, occupational hazards, and risk factors that may exacerbate current environmental health issues. The second panel determined that communication, education, and regulation were the mechanisms for addressing current environmental challenges. CONCLUSIONS: In this commentary we expand on the views presented at the meeting and represent the concerns of young investigators from nine different countries. We provide ideas about and support the exchange of information between developed and developing countries on how to handle the environmental health challenges that face the world today.


Subject(s)
Environmental Health , International Cooperation , Environmental Pollution/legislation & jurisprudence , Environmental Pollution/prevention & control , Europe , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...