Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Ann Work Expo Health ; 67(7): 831-846, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37300561

ABSTRACT

Indoor microbial exposure may cause negative health effects. Only little is known about the occupational microbial exposure in nursing homes and the factors that influence the exposure. The exposure in nursing homes may be increased due to close contact with elderly persons who may carry infectious or antimicrobial-resistant microorganisms and due to handling of laundry, such as used clothing and bed linen. We investigated the microbial exposure in 5 nursing homes in Denmark, by use of personal bioaerosol samples from different groups of staff members taken during a typical working day, stationary bioaerosol measurements taken during various work tasks, sedimented dust samples, environmental surface swabs, and swabs from staff members' hands. From the samples, we explored bacterial and fungal concentrations and species composition, endotoxin levels, and antimicrobial resistance in Aspergillus fumigatus isolates. Microbial concentrations from personal exposure samples differed among professions, and geometric means (GM) were 2,159 cfu/m3 (84 to 1.5 × 105) for bacteria incubated on nutrient agar, 1,745 cfu/m3 (82 to 2.0 × 104) for bacteria cultivated on a Staphylococcus selective agar, and 16 cfu/m3 air for potential pathogenic fungi incubated at 37 °C (below detection limit to 257). Bacterial exposures were elevated during bed making. On surfaces, the highest bacterial concentrations were found on bed railings. The majority of bacterial species found were related to the human skin microflora, such as different Staphylococcus and Corynebacterium species. Endotoxin levels ranged from 0.02 to 59.0 EU/m3, with a GM of 1.5 EU/m3. Of 40 tested A. fumigatus isolates, we found one multiresistant isolate, which was resistant towards both itraconazole and voriconazole, and one isolate resistant towards amphotericin B. In conclusion, we give an overview of the general microbial exposure in nursing homes and show that microbial exposures are higher for staff with more care and nursing tasks compared with administrative staff.


Subject(s)
Air Pollutants, Occupational , Anti-Infective Agents , Occupational Exposure , Humans , Aged , Occupational Exposure/analysis , Endotoxins/analysis , Agar , Air Pollutants, Occupational/analysis , Environmental Monitoring , Bacteria , Staphylococcus
2.
Water Res ; 231: 119625, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36680819

ABSTRACT

Work in wastewater treatment plants (WWTPs) can be associated with exposure to airborne microorganisms and endotoxin from the working environment. The aim of this study was to obtain knowledge about whether serum levels of the markers of systemic inflammation, C-reactive protein (CRP) and serum amyloid A (SAA), are associated with personal exposure to endotoxin, measured using the Limulus (endotoxinLimulus) and the rFC (endotoxinrFC) assays, as well as bacteria and fungi in a cohort of WWTP workers. Exposure and blood samples were collected for 11 workers over one year. Exposure to endotoxinLimulus-day and endotoxinrFC-day correlated significantly (r = 0.80, p<0.0001, n = 104), but endotoxinLimulus-day was 4.4 (Geometric mean (GM) value) times higher than endotoxinrFC-day (p<0.0001). The endotoxinLimulus-day, endotoxinrFC-day, bacteria, and fungal exposure as well as serum levels of CRP-day (GM=1.4 mg/l) and SAA-day (GM=12 mg/l) differed between workers. Serum levels of SAAday correlated significantly with CRPday (r = 0.30, p = 0.0068). The serum levels of CRPday were associated significantly with exposure to endotoxinLimulus-day. Exposure, SAA and CRP data were also analyzed as av. of each season, and SAAseason was associated positively and significantly with endotoxinLimulus-season and endotoxinrFC-season and negatively with fungalseason exposure. In conclusion, CRPday was associated with the endotoxinLimulus-day and SAAseason with endotoxinLimulus-season and endotoxinrFC-season exposure. Thus, we hereby document that WWTP workers are exposed to airborne endotoxin which seems to have a negative impact on their health.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Water Purification , Humans , Endotoxins , Occupational Exposure/analysis , Air Pollutants, Occupational/analysis , Cohort Studies , Environmental Monitoring/methods , Bacteria , Biomarkers , Inflammation , Air Microbiology , Fungi , Dust/analysis
3.
Sci Rep ; 12(1): 11151, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778461

ABSTRACT

The diagnosis of COVID-19 is based on detection of SARS-CoV-2 in oro-/nasopharyngel swabs, but due to discomfort and minor risk during the swab procedure, detection of SARS-CoV-2 has been investigated in other biological matrixes. In this proof-of-concept study, individuals with confirmed SARS-CoV-2 infection performed a daily air sample for five days. Air samples were obtained through a non-invasive electrostatic air sampler. Detection of SARS-CoV-2 RNA was determined with qRT-PCR. The association of positive samples with different exposures was evaluated through mixed-effect models. We obtained 665 air samples from 111 included participants with confirmed SARS-CoV-2 infection. Overall, 52 individuals (46.8%) had at least one positive air sample, and 129 (19.4%) air samples were positive for SARS-CoV-2. Participants with symptoms or a symptom duration ≤ four days had significantly higher odds of having a positive air sample. Cycle threshold values were significantly lower in samples obtained ≤ 4 days from symptom onset. Neither variant of SARS-CoV-2 nor method of air sampling were associated with a positive air sample. We demonstrate that SARS-CoV-2 is detectable in human breath by electrostatic air sampling with the highest detection rate closest to symptom onset. We suggest further evaluation of the air sampling technique to increase sensitivity.


Subject(s)
Body Fluids , COVID-19 , Body Fluids/chemistry , COVID-19/diagnosis , Humans , RNA, Viral/genetics , SARS-CoV-2
4.
Ecotoxicol Environ Saf ; 205: 111365, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32977286

ABSTRACT

Work in wastewater treatment plants (WWTPs) can be associated with respiratory symptoms and diarrhea. The aim of this study was to obtain knowledge about WWTP workers' exposure to airborne bacteria and endotoxin, and the inflammatory potential (TIP) of their exposure, and to evaluate the risk posed by the exposure by 1) calculating a hazard index and relating the exposure to suggested occupational exposure limits (OELs), 2) estimating the potential deposition of bacteria in the airways, 3) relating it to the risk group classification of bacteria by the European Union, and 4) estimating the TIP of the personal exposure. A cohort of 14 workers were followed over one year. Bioaerosols were collected using personal and stationary samplers in a grid chamber house and an aeration tank area. Airborne bacteria were identified using (MALDI-TOF MS), and TIP of exposure was measured using HL-60 cells. A significant effect of season, work task, and person was found on the personal exposure. A hazard index based on exposure levels indicates that the risk caused by inhalation is low. In relation to suggested OELs, 14% and 34% of the personal exposure were exceeded for endotoxin (≥50 EU/m3) and bacteria (≥500 CFU/m3). At least 70% of the airborne bacteria in the grid chamber house and the aeration tank area could potentially deposit in the lower respiratory tract. From the personal samples, three of 131 bacterial species, Enterobacter cloacae, Staphylococcus aureus, and Yersinia enterocolitica are classified within Risk Group 2. Seven additional bacteria from the stationary samples belong to Risk Group 2. The bacterial species composition was affected significantly by season (p = 0.014) and by sampling type/area (p = 0.001). The TIP of WWTP workers' exposure was higher than of a reference sample, and the highest TIP was measured in autumn. TIP of personal exposure correlated with bacterial exposure. Based on the geometric average exposures to endotoxin (9.2 EU/m3) and bacteria (299 CFU/m3) and based on the calculated hazard index, the risk associated with exposure is low. However, since 43 of 106 exposure levels exceed suggested OELs, the TIP of exposure was elevated and associated with bacterial exposure, and WWTP workers were exposed to pathogenic bacteria, a continued focus on preventive measures is important. The identification of bacteria to species level in personal samples was necessary in the risk assessment, and measurement of the microbial composition made the source tracking possible.


Subject(s)
Air Pollutants, Occupational/analysis , Occupational Exposure/analysis , Waste Disposal Facilities , Waste Disposal, Fluid , Air Microbiology , Bacteria , Endotoxins/analysis , Environmental Monitoring/methods , Humans , Inhalation Exposure/analysis , Occupational Exposure/statistics & numerical data , Seasons , Wastewater/microbiology
5.
Ann Work Expo Health ; 64(9): 1020-1034, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32968799

ABSTRACT

OBJECTIVES: Methicillin-resistant Staphylococcus aureus (MRSA) is an increasing public and occupational health concern. As transmission of MRSA can occur via contact with fomites, it is crucial to have sensitive methods for sampling of bacteria. The overall aim of this study was to obtain knowledge about methods and strategies for quantitative sampling Staphylococcus species on surfaces. METHODS: The study was designed as a comparative sampling experiment with different samplers [dipslide (two agar types), swabs (three brands, used wet and dry, and elution from swabs or plate diluted)] on smooth stainless steel surfaces spiked with MRSA and methicillin-sensitive S. aureus (MSSA). Furthermore, bacteria sampled from indoor surfaces with frequent or infrequent contact with hands were quantified and identified using matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). RESULTS: Pre-moistened swabs in combination with dilution plating and dipslides were more sensitive than dry swabs. For recovery of MRSA and MSSA from surfaces with eSwabs, at least 0.3-100 CFU MRSA cm-2 and 5.3-8.6 CFU MSSA cm-2 should be present. The sensitivities of pre-moistened eSwabs were approximately 10-fold higher than those of dipslides and pre-moistened viscose and cotton swabs. The variation in concentrations of Staphylococcus species in replicate sampling of adjacent squares on indoor surfaces was higher for surfaces frequently touched by hands than for surfaces infrequently touched. In total 16 different Staphylococcus species were identified, and S. aureus was found only in 2 of 66 surface samples. A considerable overlap was found between species in replicate sampling within an environment and between the air and surfaces within an environment. CONCLUSIONS: Pre-moistened eSwabs in combination with dilution plating were found to be the best method for surface sampling of MSSA and MRSA. The method can be used for assessing the risk of exposure and transmission of MRSA from environmental surfaces. To obtain a reliable measure of concentrations and the presence of Staphylococccus species a higher number of samples should be taken from surfaces with hand contact than from surfaces dominated by sedimented bacteria.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Occupational Exposure , Staphylococcal Infections , Humans , Staphylococcus , Staphylococcus aureus
6.
Sci Total Environ ; 724: 138231, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32408454

ABSTRACT

Penicillium and Aspergillus are among the dominant genera of fungi in many environments. Exposure to these fungi may cause inflammation-related health effects, however the knowledge about this at species level is limited. The aim of this study was to obtain knowledge about cleaning workers' exposure to fungi and to investigate the total inflammatory potential (TIP) and the cytotoxic potential of fungal species. The fungi were obtained from the personal exposure of cleaning workers' in five nursing homes. In total 271 fungal isolates were identified using MALDI-TOF MS. The TIP and cytotoxic potential were determined for 30 different fungal isolates covering 17 species in an in vitro assay by exposing HL-60 cells to the fungal spores of each isolate. The geometric mean exposure of the cleaning workers was 351 CFU fungi/m3 air. We showed that the TIP and cytotoxicity varied among both species and isolates. At the two lowest doses, there was a positive relationship between spore concentration and TIP. The species with highest TIPs were A. candidus and P. italicum, while the most cytotoxic ones were A. niger and A. fumigatus. There was no obvious relationship between the TIP of an isolate and its cytotoxicity. The results of this study provide a better understanding of the inflammatory potential and cytotoxicity of different environmental fungal species and contribute to the risk evaluation of exposure to different Penicillium and Aspergillus species.


Subject(s)
Air Pollution, Indoor/analysis , Penicillium , Air Microbiology , Aspergillus , Environmental Monitoring , Fungi , Humans , Niger , Nursing Homes
7.
Sci Total Environ ; 668: 13-24, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-30851679

ABSTRACT

Poor air quality is a leading contributor to the global disease burden and total number of deaths worldwide. Humans spend most of their time in built environments where the majority of the inhalation exposure occurs. Indoor Air Quality (IAQ) is challenged by outdoor air pollution entering indoors through ventilation and infiltration and by indoor emission sources. The aim of this study was to understand the current knowledge level and gaps regarding effective approaches to improve IAQ. Emission regulations currently focus on outdoor emissions, whereas quantitative understanding of emissions from indoor sources is generally lacking. Therefore, specific indoor sources need to be identified, characterized, and quantified according to their environmental and human health impact. The emission sources should be stored in terms of relevant metrics and statistics in an easily accessible format that is applicable for source specific exposure assessment by using mathematical mass balance modelings. This forms a foundation for comprehensive risk assessment and efficient interventions. For such a general exposure assessment model we need 1) systematic methods for indoor aerosol emission source assessment, 2) source emission documentation in terms of relevant a) aerosol metrics and b) biological metrics, 3) default model parameterization for predictive exposure modeling, 4) other needs related to aerosol characterization techniques and modeling methods. Such a general exposure assessment model can be applicable for private, public, and occupational indoor exposure assessment, making it a valuable tool for public health professionals, product safety designers, industrial hygienists, building scientists, and environmental consultants working in the field of IAQ and health.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/statistics & numerical data , Environmental Monitoring , Inhalation Exposure/statistics & numerical data , Aerosols , Air Pollution/statistics & numerical data , Environmental Exposure , Humans , Models, Theoretical , Particulate Matter , Risk Assessment
8.
PLoS Curr ; 82016 Oct 04.
Article in English | MEDLINE | ID: mdl-27803839

ABSTRACT

INTRODUCTION: In early April 2016, an unusual high number of point-source outbreaks of gastrointestinal disease were reported to occur in Denmark. METHODS: Outbreaks were individually investigated. Two analytical studies were performed. Patient stool samples collected and analysed; positive stool samples were sequenced over the polymerase and/or capsid gene areas. Implicated lettuce heads were collected and analysed for the presence of norovirus. Foods were traced-back and traced-forward and international alert systems applied. RESULTS: A total of 23 linked point-source outbreaks occurred over the course of one week. Fresh green coral lettuce (Lollo Bionda lettuce) had been consumed in all settings. In a cohort study including 234 participants a dish containing green lettuce was associated with illness. Norovirus of Genogroup I (GI) was detected in samples from 28 patients comprising eight of the outbreaks. Sequencing showed GI.P2-GI.2. GI norovirus was detected in one of 20 examined lettuce heads. All lettuce consumed was supplied by the same packer who in turn had bought the lettuce from a wholesaler in France. The two lots of lettuce came from two different growers in different parts of France. DISCUSSION: Green coral lettuce produced in France was found to have caused a large series of linked norovirus outbreaks in Denmark as established by a number of lines of evidence. A similar incidence occurred in 2010. Fresh lettuce increasingly appear to be a risk food for norovirus infections.

10.
Environ Res ; 148: 491-499, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27148672

ABSTRACT

OBJECTIVES: An employee with no prior history of allergy or asthma, experienced respiratory and flu-like symptoms during production of shrimp shell powder in a seafood savory factory in Norway. We aimed to clarify the diagnosis and to identify the cause of the symptoms by specific inhalation challenge (SIC) and by characterizing the powder's biocontaminants, particle size fractions and inflammatory potential. METHODS: Respiratory and immunological responses were measured the day before and after each of four challenges with 20-150g shrimp shell powder during three consecutive days. The powder was analyzed for endotoxin, microorganisms and particle size fractions by standardized laboratory methods. Total inflammatory potential was quantified by reactive oxygen species (ROS) production in a granulocyte assay. RESULTS: The patient had elevated IgG, but not IgE, towards shrimp shell powder. 20min challenge with 150g shrimp shell powder induced 15% decrease in FVC, 23% decrease in FEV1 and increased unspecific bronchial reactivity by methacholine. Neutrophils and monocytes increased 84% and 59%, respectively, and the patient experienced temperature increase and flu-like symptoms. The shrimp shell powder contained 1118 endotoxin units/g and bacteria including Bacillus cereus, and 57% respirable size fraction when aerosolized. The ROS production was higher for shrimp shell powder than for endotoxin alone. CONCLUSIONS: Endotoxin and other bacterial components combined with a high fraction of respirable dust might be the cause of the symptoms. The patient's characteristics and response to SIC were best compatible with occupational asthma and organic dust toxic syndrome, while hypersensitivity pneumonitis could not be excluded.


Subject(s)
Inhalation Exposure , Lung Diseases/etiology , Occupational Diseases/etiology , Occupational Exposure , Pandalidae , Animals , Bacillus cereus/isolation & purification , Dust/analysis , Endotoxins/analysis , Female , Food-Processing Industry , Forced Expiratory Volume , Humans , Immunoglobulin E/blood , Immunoglobulin G/blood , Leukocyte Count , Lung Diseases/immunology , Lung Diseases/physiopathology , Middle Aged , Occupational Diseases/immunology , Occupational Diseases/physiopathology , Pandalidae/immunology , Powders , Reactive Oxygen Species/analysis
11.
Ann Occup Hyg ; 60(6): 651-68, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27098185

ABSTRACT

A large number of people work with garbage collection, and exposure to microorganisms is considered an occupational health problem. However, knowledge on microbial exposure at species level is limited. The aim of the study was to achieve knowledge on waste collectors' exposure to airborne inhalable fungal and bacterial species during waste collection with focus on the transport of airborne microorganisms into the truck cab. Airborne microorganisms were collected with samplers mounted in the truck cab, on the workers' clothes, and outdoors. Fungal and bacterial species were quantified and identified. The study showed that the workers were exposed to between 112 and 4.8×10(4) bacteria m(-3) air and 326 and 4.6×10(4) fungi m(-3) air. The personal exposures to bacteria and fungi were significantly higher than the concentrations measured in the truck cabs and in the outdoor references. On average, the fungal and bacterial concentrations in truck cabs were 111 and 7.7 times higher than outdoor reference measurements. In total, 23 fungal and 38 bacterial species were found and identified. Most fungal species belonged to the genus Penicillium and in total 11 Penicillium species were found. Identical fungal species were often found both in a personal sample and in the same person's truck cab, but concentrations were on average 27 times higher in personal samples. Concentrations of fungal and bacterial species found only in the personal samples were lower than concentrations of species also found in truck cabs. Skin-related bacteria constituted a large fraction of bacterial isolates found in personal and truck cab samples. In total, six Staphylococcus species were found. In outdoor samples, no skin-related bacteria were found. On average, concentrations of bacterial species found both in the truck cab and personal samples were 77 times higher in personal samples than in truck cab samples. In conclusion, high concentrations of fungi were found in truck cabs, but the highest concentrations were found in personal samples; fungal and bacterial species found in high concentrations in personal samples were also found in truck cabs, but in lower concentrations indicating that both fungi and bacteria are transported by the workers into the truck cab, and are subsequently aerosolized in the truck cab.


Subject(s)
Air Microbiology , Bacteria/isolation & purification , Fungi/isolation & purification , Motor Vehicles , Occupational Exposure/analysis , Waste Management/methods , Air Pollutants, Occupational/analysis , Environmental Monitoring , Humans
12.
J Food Prot ; 75(2): 376-81, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22289601

ABSTRACT

Human disease outbreaks caused by norovirus (NoV) following consumption of contaminated raspberries are an increasing problem. An efficient method to decontaminate the fragile raspberries and the equipment used for processing would be an important step in ensuring food safety. A potential surface treatment that combines pressurized steam and high-power ultrasound (steam-ultrasound) was assessed for its efficacy to inactivate human NoV surrogates: coliphage (MS2), feline calicivirus (FCV), and murine norovirus (MNV) inoculated on plastic surfaces and MS2 inoculated on fresh raspberries. The amounts of infectious virus and viral genomes were determined by plaque assay and reverse transcription-real time quantitative PCR (RT-qPCR), respectively. On plastic surfaces, an inactivation of >99.99% was obtained for both MS2 and FCV, corresponding to a 9.1-log and >4.8-log reduction after 1 or 3 s of treatment, respectively; while a 3.7-log (99.9%) reduction of MNV was reached after 3 s of treatment. However, on fresh raspberries only a 1-log reduction (∼89%) of MS2 could be achieved after 1 s of treatment, at which point damage to the texture of the fresh raspberries was evident. Increasing treatment time (0 to 3 s) resulted in negligible reductions of viral genome titers of MS2, FCV, and MNV on plastic surfaces as well as of MS2 inoculated on raspberries. Steam-ultrasound treatment in its current format does not appear to be an appropriate method to achieve sufficient decontamination of NoV-contaminated raspberries. However, steam-ultrasound may be used to decontaminate smooth surface areas and utensils in food production and processing environments.


Subject(s)
Fruit/virology , Norovirus/growth & development , Steam , Ultrasonics , Animals , Colony Count, Microbial , Consumer Product Safety , Food Contamination/analysis , Food Contamination/prevention & control , Food Microbiology , Humans , Norovirus/isolation & purification , Norovirus/pathogenicity , Plastics , Virus Inactivation
13.
J Virol Methods ; 169(1): 70-8, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20603152

ABSTRACT

Foodborne outbreaks caused by noroviruses (NoVs) and hepatitis A virus (HAV) are often linked to consumption of contaminated shellfish. The objective of this study was to identify an appropriate virus recovery method for real-time reverse transcriptase (RT)-PCR detection and subsequently to evaluate this method on shellfish bioaccumulated with virus in a collaborative study. Five methods were compared for recovery of NoV GII.7 and feline calicivirus from spiked digestive tissue of oysters and mussels. A method based on proteinase K digestion followed by NucliSENS miniMAG extraction was found to be the most efficient with a 50% limit of detection (LOD(50)) of 62 and 12 RT-PCR U/1.5 g digestive tissue for NoV GII.7 in oysters and mussels, respectively. Evaluation of the method in four laboratories found the percentage of sensitivity, based on low/high levels of virus bioaccumulated in oysters, to be 33/80 for NoV GI.3b, 13/92 for NoV GII.4 and 50/42 for HAV. A specificity of 100% was found for all three viruses in non-bioaccumulated oysters. As process control Mengovirus (vMC(0)) showed an average recovery of 1.8% from oysters and 1.2% from mussels. The study demonstrates that this recovery method can be useful for harmonized data generation and routine viral analyses of shellfish.


Subject(s)
Hepatitis A virus/isolation & purification , Mytilus edulis/virology , Norovirus/isolation & purification , Ostreidae/virology , RNA, Viral/isolation & purification , Virology/methods , Animals , Calicivirus, Feline/isolation & purification , Humans , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...