Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 170: 112625, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34174746

ABSTRACT

Current knowledge of the distribution of sensitive seabirds is inadequate to safeguard seabird populations from impacts of oil spills in the Arctic. This gap is mainly driven by the fact that statistical models applied to survey data are coarse-scale and static with limited documentation of the distributional dynamics and patchiness of seabirds relevant to risk assessments related to oil spills. This paper describes a dynamic modelling framework solution for prediction of fine-scale densities and movements of seabirds in close-to-real time using fully integrated 3-D hydrodynamic models, dynamic habitat suitability models and agent-based models. The modelling framework has been developed and validated for the swimming migration of Brünnich's Guillemot Uria lomvia in the Barents Sea. The results document that the distributional dynamics of Brünnich's Guillemot and other seabird species to a large degree can be simulated with in-situ state variables and patterns reflecting the physical meteorology and oceanography and habitat suitability.


Subject(s)
Charadriiformes , Petroleum Pollution , Animals , Arctic Regions , Ecosystem , Risk Assessment
2.
Mar Pollut Bull ; 96(1-2): 110-26, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26021288

ABSTRACT

We compare oil spill model predictions for a prototype subsea blowout with and without subsea injection of chemical dispersants in deep and shallow water, for high and low gas-oil ratio, and in weak to strong crossflows. Model results are compared for initial oil droplet size distribution, the nearfield plume, and the farfield Lagrangian particle tracking stage of hydrocarbon transport. For the conditions tested (a blowout with oil flow rate of 20,000 bbl/d, about 1/3 of the Deepwater Horizon), the models predict the volume median droplet diameter at the source to range from 0.3 to 6mm without dispersant and 0.01 to 0.8 mm with dispersant. This reduced droplet size owing to reduced interfacial tension results in a one to two order of magnitude increase in the downstream displacement of the initial oil surfacing zone and may lead to a significant fraction of the spilled oil not reaching the sea surface.


Subject(s)
Models, Chemical , Petroleum Pollution/statistics & numerical data , Water Pollution, Chemical/statistics & numerical data , Environmental Monitoring , Environmental Restoration and Remediation/methods , Petroleum Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...