Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(9): 5209-5225, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38636948

ABSTRACT

RNA silencing is a post-transcriptional gene-silencing mechanism mediated by microRNAs (miRNAs). However, the regulatory mechanism of RNA silencing during viral infection is unclear. TAR RNA-binding protein (TRBP) is an enhancer of RNA silencing that induces miRNA maturation by interacting with the ribonuclease Dicer. TRBP interacts with a virus sensor protein, laboratory of genetics and physiology 2 (LGP2), in the early stage of viral infection of human cells. Next, it induces apoptosis by inhibiting the maturation of miRNAs, thereby upregulating the expression of apoptosis regulatory genes. In this study, we show that TRBP undergoes a functional conversion in the late stage of viral infection. Viral infection resulted in the activation of caspases that proteolytically processed TRBP into two fragments. The N-terminal fragment did not interact with Dicer but interacted with type I interferon (IFN) signaling modulators, such as protein kinase R (PKR) and LGP2, and induced ER stress. The end results were irreversible apoptosis and suppression of IFN signaling. Our results demonstrate that the processing of TRBP enhances apoptosis, reducing IFN signaling during viral infection.


Subject(s)
Apoptosis , Caspases , RNA-Binding Proteins , Humans , Caspases/metabolism , Cell Line , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Endoplasmic Reticulum Stress/genetics , HEK293 Cells , HeLa Cells , Interferon Type I/metabolism , Interferon Type I/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Ribonuclease III/metabolism , Ribonuclease III/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Virus Diseases/genetics , Virus Diseases/metabolism
2.
bioRxiv ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38659873

ABSTRACT

In Lepidoptera (butterflies and moths), the genomic region around the gene cortex is a 'hotspot' locus, repeatedly used to generate intraspecific melanic wing color polymorphisms across 100-million-years of evolution. However, the identity of the effector gene regulating melanic wing color within this locus remains unknown. Here, we show that none of the four candidate protein-coding genes within this locus, including cortex, serve as major effectors. Instead, a micro-RNA (miRNA), mir-193, serves as the major effector across three deeply diverged lineages of butterflies, and its function is conserved in Drosophila. In Lepidoptera, mir-193 is derived from a gigantic long non-coding RNA, ivory, and it functions by directly repressing multiple pigmentation genes. We show that a miRNA can drive repeated instances of adaptive evolution in animals.

3.
Methods Mol Biol ; 2637: 49-62, 2023.
Article in English | MEDLINE | ID: mdl-36773137

ABSTRACT

A wide range of diseases, including cancer, autoimmune diseases, or neurodegenerative diseases, have been associated with single nucleotide mutations in their causative genes. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system is a flexible and efficient genome engineering technology widely used for researches and therapeutic applications which offers immense opportunity to treat genetic diseases. The complex of Cas9 and the guide RNA acts as an RNA-guided endonuclease. Cas9 recognizes a sequence motif known as a protospacer adjacent motif (PAM), and then the guide RNA base pairs with its proximal target region of 20 nucleotides with sequence complementarity. Here we describe the procedure named single nucleotide polymorphism-distinguishable (SNPD)-CRISPR system which can suppress or enhance the expression of disease-causative gene with single nucleotide mutation distinguished from its wild-type. In this study, we used HRAS, one of most famous cancer-causative genes, as an example of a target gene.


Subject(s)
CRISPR-Cas Systems , Polymorphism, Single Nucleotide , CRISPR-Cas Systems/genetics , RNA/genetics , Nucleotides , Gene Expression
4.
Methods Mol Biol ; 2637: 63-73, 2023.
Article in English | MEDLINE | ID: mdl-36773138

ABSTRACT

Genome sequencing technologies have rapidly evolved in the past decades, enabling us to interpret the human genome through multiple perspectives, ranging from cross-species comparisons, naturally occurring variation in health and disease state to regulatory mechanisms.Although such perspectives are all informative to narrow down the list of genes or variants for perturbation experiments based on specific biological aims, utilizing multiple sources of information is often challenging in practice.In this chapter, we provide an overview of major large-scale functional and population genomics resources, followed by a practical example of selecting target variants for genetic perturbation experiments involving genome engineering techniques such as CRISPR/Cas.


Subject(s)
CRISPR-Cas Systems , Metagenomics , Humans , CRISPR-Cas Systems/genetics , Chromosome Mapping , Genome, Human
6.
Bioorg Med Chem Lett ; 74: 128939, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35964844

ABSTRACT

The medicinal applications of siRNAs have been intensively examined but are still hindered by their low molecular stability under biological conditions and off-target effects, etc. The introduction of chemical modifications to the nucleoside is a promising strategy for solving these limitations. Herein, we describe the development of a new uridine analog, U*, that has a (methylthiomethoxy)methoxy group at the 2' position. The phosphoramidite reagent corresponding to U* was easily synthesized and the RNA oligonucleotides containing U* were stably prepared using a standard protocol for oligonucleotide synthesis. The introduction of U* into the siRNA resulted in positive or negative effects on the targeted gene silencing in a position-dependent manner, and the positive effects were attributed to the improved stability under biological conditions. The thermodynamic analysis of the U*-modified RNAs revealed a slight destabilization of the dsRNA, based depending on which U was strategically utilized to restrain the off-target effects of the siRNA. This study describes a rare example of nucleoside analogs with a large substitution at the 2'-position in the context of an siRNA application and is informative for the development of other analogs to further improve the molecular properties of siRNAs for medicinal applications.


Subject(s)
Gene Silencing , Oligonucleotides , Nucleosides , Oligonucleotides/chemistry , RNA, Small Interfering/chemistry , Thermodynamics , Uridine/chemistry
7.
Cancers (Basel) ; 14(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35804932

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is predicted to become the second-most common cause of death within the next 10 years. Due to the limited efficacy of available therapies, the survival rate of PDAC patients is very low. Oncogenic BRAF mutations are one of the major causes of PDAC, specifically the missense V600E and L485-P490 15-bp deletion mutations. Drugs targeting the V600E mutation have already been approved by the United States Food and Drug Administration. However, a drug targeting the deletion mutation at L485-P490 of the BRAF gene has not been developed to date. The BxPC-3 cell line is a PDAC-derived cell line harboring wild-type KRAS and L485-P490 deleted BRAF genes. These cells are heterozygous for BRAF, harboring both wild-type BRAF and BRAF with the 15-bp deletion. In this study, siRNA was designed for the targeted knockdown of 15-bp deletion-type BRAF mRNA. This siRNA repressed the phosphorylation of extracellular-signal-regulated kinase proteins downstream of BRAF and suppressed cell growth in vitro and in vivo. Furthermore, siRNAs with 2'-O-methyl modifications at positions 2-5 reduce the seed-dependent off-target effects, as confirmed by reporter and microarray analyses. Thus, such siRNA is a promising candidate therapy for 15-bp deletion-type BRAF-induced tumorigenesis.

8.
Genes (Basel) ; 13(2)2022 02 09.
Article in English | MEDLINE | ID: mdl-35205363

ABSTRACT

In RNA interference (RNAi), small interfering RNA (siRNA) suppresses the expression of its target mRNA with a perfect complementary sequence. In addition, siRNA also suppresses the expression of unintended mRNAs with partially complementary sequences mainly within the siRNA seed region (nucleotides 2-8). This mechanism is highly similar to microRNA (miRNA)-mediated RNA silencing, and known as the siRNA-mediated off-target effect. Previously, we revealed that the off-target effect is induced through stable base-pairing between the siRNA seed region and off-target mRNAs, but not induced through unstable base-pairing. However, in our recent study, we found that the siRNA seed region consists of two functionally different domains: nucleotides 2-5, essential for off-target effects, and nucleotides 6-8, involved in both RNAi and off-target effects. In this study, we investigated the most responsible region for the off-target effect by conducting a comprehensive analysis of the thermodynamic properties of all possible siRNA subregions that involved a machine learning technique using a random sampling procedure. As a result, the thermodynamic stability of nucleotides 2-5 showed the highest positive correlation with the off-target effect, and nucleotides 8-14 showed the most negative correlation. Thus, it is revealed that the siRNA off-target effect is determined by the base-pairing stabilities of two different subregions with opposite effects.


Subject(s)
Nucleotides , RNA, Double-Stranded , Base Pairing/genetics , Nucleotides/genetics , RNA Interference , RNA, Messenger/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
9.
ACS Omega ; 7(2): 2398-2410, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35071927

ABSTRACT

In RNA interference (RNAi), small interfering RNA (siRNA) functions to suppress the expression of its target mRNA with perfect sequence complementarity. In a mechanism different from above, siRNA also suppresses unintended mRNAs with partial sequence complementarities, mainly to the siRNA seed region (nucleotides 2-8). This mechanism is largely utilized by microRNAs (miRNAs) and results in siRNA-mediated off-target effects. Thus, the siRNA seed region is considered to be involved in both RNAi and off-target effects. In this study, we revealed that the impact of 2'-O-methyl (2'-OMe) modification is different according to the nucleotide positions. The 2'-OMe modifications of nucleotides 2-5 inhibited off-target effects without affecting on-target RNAi activities. In contrast, 2'-OMe modifications of nucleotides 6-8 increased both RNAi and off-target activities. The computational simulation revealed that the structural change induced by 2'-OMe modifications interrupts base pairing between siRNA and target/off-target mRNAs at nucleotides 2-5 but enhances at nucleotides 6-8. Thus, our results suggest that siRNA seed region consists of two functionally different domains in response to 2'-OMe modifications: nucleotides 2-5 are essential for avoiding off-target effects, and nucleotides 6-8 are involved in the enhancement of both RNAi and off-target activities.

10.
Noncoding RNA ; 7(3)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34564319

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that are about 22 nucleotides in length. They regulate gene expression post-transcriptionally by guiding the effector protein Argonaute to its target mRNA in a sequence-dependent manner, causing the translational repression and destabilization of the target mRNAs. Both Drosha and Dicer, members of the RNase III family proteins, are essential components in the canonical miRNA biogenesis pathway. miRNA is transcribed into primary-miRNA (pri-miRNA) from genomic DNA. Drosha then cleaves the flanking regions of pri-miRNA into precursor-miRNA (pre-miRNA), while Dicer cleaves the loop region of the pre-miRNA to form a miRNA duplex. Although the role of Drosha and Dicer in miRNA maturation is well known, the modulation processes that are important for regulating the downstream gene network are not fully understood. In this review, we summarized and discussed current reports on miRNA biogenesis caused by Drosha and Dicer. We also discussed the modulation mechanisms regulated by double-stranded RNA binding proteins (dsRBPs) and the function and substrate specificity of dsRBPs, including the TAR RNA binding protein (TRBP) and the adenosine deaminase acting on RNA (ADAR).

11.
Cell Rep ; 35(10): 109219, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34107250

ABSTRACT

Organization of dynamic cellular structure is crucial for a variety of cellular functions. In this study, we report that Drosophila and Aedes have highly elastic cell membranes with extremely low membrane tension and high resistance to mechanical stress. In contrast to other eukaryotic cells, phospholipids are symmetrically distributed between the bilayer leaflets of the insect plasma membrane, where phospholipid scramblase (XKR) that disrupts the lipid asymmetry is constitutively active. We also demonstrate that XKR-facilitated phospholipid scrambling promotes the deformability of cell membranes by regulating both actin cortex dynamics and mechanical properties of the phospholipid bilayer. Moreover, XKR-mediated construction of elastic cell membranes is essential for hemocyte circulation in the Drosophila cardiovascular system. Deformation of mammalian cells is also enhanced by the expression of Aedes XKR, and thus phospholipid scrambling may contribute to formation of highly deformable cell membranes in a variety of living eukaryotic cells.


Subject(s)
Cell Membrane/metabolism , Phospholipid Transfer Proteins/metabolism , Animals , Drosophila , Insecta
12.
Methods Mol Biol ; 2282: 17-30, 2021.
Article in English | MEDLINE | ID: mdl-33928567

ABSTRACT

RNA interference mediated by small interfering RNA (siRNA) has been widely used as a procedure to knock down the expression of an intended target gene with perfect sequence complementarity. However, siRNA often exhibits off-target effects on genes with partial sequence complementarities. Such off-target effect is an undesirable adverse effect for knocking down a target gene specifically. Here we describe the powerful strategy to avoid off-target effects without affecting the RNAi activity by the introduction of DNA or 2'-O-methyl modifications in the siRNA seed region. These two types of chemical modifications repress off-target effects through different molecular mechanisms.


Subject(s)
DNA Methylation , RNA Interference , RNA, Small Interfering/genetics , Vimentin/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Oligonucleotide Array Sequence Analysis , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Research Design , Vimentin/metabolism , Workflow
13.
Genes (Basel) ; 12(2)2021 02 13.
Article in English | MEDLINE | ID: mdl-33668648

ABSTRACT

Human GW182 family proteins have Argonaute (AGO)-binding domains in their N-terminal regions and silencing domains, which interact with RNA silencing-related proteins, in their C-terminal regions. Thus, they function as scaffold proteins between the AGO protein and RNA silencing-related proteins, such as carbon catabolite repressor4-negative on TATA (CCR4-NOT) or poly(A)-binding protein (PABP). Our mass spectrometry analysis and the phosphorylation data registered in PhosphoSitePlus, a post-translational modification database, suggested that the C-terminal region of a human GW182 family protein, TNRC6A, has at least four possible phosphorylation sites, which are located near the region interacting with the CCR4-NOT complex. Among them, two serine residues at amino acid positions 1332 and 1346 (S1332 and S1346) were certainly phosphorylated in human HeLa cells, but other two serine residues (S1616 and S1691) were not phosphorylated. Furthermore, it was revealed that the phosphorylation patterns of TNRC6A affect the interaction with the CCR4-NOT complex. When S1332 and S1346 were dephosphorylated, the interactions of TNRC6A with the CCR4-NOT complex were enhanced, and when S1616 and S1691 were phosphorylated, such interaction was suppressed. Thus, phosphorylation of TNRC6A was considered to regulate the interaction with RNA silencing-related factors that may affect RNA silencing activity.


Subject(s)
Autoantigens/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , RNA-Binding Proteins/genetics , Receptors, CCR4/genetics , Amino Acids/genetics , Argonaute Proteins/genetics , Cell Nucleus/genetics , HeLa Cells , Humans , MicroRNAs/genetics , Multiprotein Complexes/genetics , Phosphorylation/genetics , RNA Interference
14.
Oncogene ; 39(19): 3867-3878, 2020 05.
Article in English | MEDLINE | ID: mdl-32203161

ABSTRACT

Fusion genes resulting from chromosomal rearrangements are frequently found in a variety of cancer cells. Some of these are known to be driver oncogenes, such as BCR-ABL in chronic myelogenous leukemia (CML). The products of such fusion genes are abnormal proteins that are ordinarily degraded in cells by a mechanism known as protein quality control. This suggests that the degradation of BCR-ABL protein is suppressed in CML cells to ensure their proliferative activity. Here, we show that ubiquitin-specific protease 25 (USP25) suppresses the degradation of BCR-ABL protein in cells harboring Philadelphia chromosome (Ph). USP25 was found proximal to BCR-ABL protein in cells. Depletion of USP25 using shRNA-mediated gene silencing increased the ubiquitylated BCR-ABL, and reduced the level of BCR-ABL protein. Accordingly, BCR-ABL-mediated signaling and cell proliferation were suppressed in BCR-ABL-positive leukemia cells by the depletion of USP25. We further found that pharmacological inhibition of USP25 induced rapid degradation of BCR-ABL protein in Ph-positive leukemia cells, regardless of their sensitivity to tyrosine kinase inhibitors. These results indicate that USP25 is a novel target for inducing the degradation of oncogenic BCR-ABL protein in Ph-positive leukemia cells. This could be an effective approach to overcome resistance to kinase inhibitors.


Subject(s)
Genes, abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Philadelphia Chromosome , Ubiquitin Thiolesterase/genetics , Cell Proliferation/drug effects , Deubiquitinating Enzymes/genetics , Drug Resistance, Neoplasm/genetics , Gene Silencing/drug effects , Humans , Jurkat Cells , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Protein Kinase Inhibitors/pharmacology , Proteolysis/drug effects , RNA, Small Interfering/genetics
15.
Int J Mol Sci ; 21(4)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079277

ABSTRACT

RNA silencing is a posttranscriptional gene silencing mechanism directed by endogenous small non-coding RNAs called microRNAs (miRNAs). By contrast, the type-I interferon (IFN) response is an innate immune response induced by exogenous RNAs, such as viral RNAs. Endogenous and exogenous RNAs have typical structural features and are recognized accurately by specific RNA-binding proteins in each pathway. In mammalian cells, both RNA silencing and the IFN response are induced by double-stranded RNAs (dsRNAs) in the cytoplasm, but have long been considered two independent pathways. However, recent reports have shed light on crosstalk between the two pathways, which are mutually regulated by protein-protein interactions triggered by viral infection. This review provides brief overviews of RNA silencing and the IFN response and an outline of the molecular mechanism of their crosstalk and its biological implications. Crosstalk between RNA silencing and the IFN response may reveal a novel antiviral defense system that is regulated by miRNAs in mammalian cells.


Subject(s)
Antiviral Agents/pharmacology , Interferons/metabolism , Interferons/pharmacology , RNA Interference/physiology , Animals , Cytoplasm/metabolism , Cytoplasm/virology , Gene Silencing , Humans , Immunity, Innate , Interferon Type I/pharmacology , Interferons/genetics , Interferons/immunology , MicroRNAs/biosynthesis , MicroRNAs/genetics , RNA, Double-Stranded , RNA, Viral/drug effects , RNA-Binding Proteins/metabolism , Viruses
16.
Biol Open ; 9(2)2020 02 25.
Article in English | MEDLINE | ID: mdl-32051109

ABSTRACT

The transactivating response (TAR) RNA-binding protein (TRBP) has been identified as a double-stranded RNA (dsRNA)-binding protein, which associates with a stem-loop region known as the TAR element in human immunodeficiency virus-1 (HIV-1). However, TRBP is also known to be an enhancer of RNA silencing, interacting with Dicer, an enzyme that belongs to the RNase III family. Dicer cleaves long dsRNA into small dsRNA fragments called small interfering RNA or microRNA (miRNA) to mediate RNA silencing. During HIV-1 infection, TAR RNA-mediated translation is suppressed by the secondary structure of 5'UTR TAR RNA. However, TRBP binding to TAR RNA relieves its inhibitory action of translation and Dicer processes HIV-1 TAR RNA to generate TAR miRNA. However, whether the interaction between TRBP and Dicer is necessary for TAR RNA translation or TAR miRNA processing remains unclear. In this study, we constructed TRBP mutants that were unable to interact with Dicer by introducing mutations into amino acid residues necessary for the interaction. Furthermore, we established cell lines expressing such TRBP mutants. Then, we revealed that the TRBP-Dicer interaction is essential for both the TAR-containing RNA translation and the TAR miRNA processing in HIV-1.


Subject(s)
DEAD-box RNA Helicases/metabolism , HIV Infections/etiology , HIV Infections/metabolism , HIV Long Terminal Repeat/genetics , HIV-1/genetics , RNA Interference , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/metabolism , Ribonuclease III/metabolism , Amino Acid Sequence , Apoptosis , Base Sequence , Binding Sites , DEAD-box RNA Helicases/chemistry , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Humans , Models, Biological , Mutation , Protein Binding , Protein Biosynthesis , RNA, Viral , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Ribonuclease III/chemistry , Structure-Activity Relationship
17.
Nucleic Acids Res ; 48(3): 1494-1507, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31799626

ABSTRACT

During viral infection, viral nucleic acids are detected by virus sensor proteins including toll-like receptor 3 or retinoic acid-inducible gene I-like receptors (RLRs) in mammalian cells. Activation of these virus sensor proteins induces type-I interferon production and represses viral replication. Recently, we reported that an RLR family member, laboratory of genetics and physiology 2 (LGP2), modulates RNA silencing by interacting with an RNA silencing enhancer, TAR-RNA binding protein (TRBP). However, the biological implications remained unclear. Here, we show that LGP2 enhances apoptosis by upregulating apoptosis regulatory genes during viral infection. Sendai virus (SeV) infection increased LGP2 expression approximately 900 times compared to that in non-virus-infected cells. Then, the induced LGP2 interacted with TRBP, resulting in the inhibition of maturation of the TRBP-bound microRNA (miRNA) and its subsequent RNA silencing activity. Gene expression profiling revealed that apoptosis regulatory genes were upregulated during SeV infection: caspases-2, -8, -3 and -7, four cysteine proteases with key roles in apoptosis, were upregulated directly or indirectly through the repression of a typical TRBP-bound miRNA, miR-106b. Our findings may shed light on the mechanism of apoptosis, induced by the TRBP-bound miRNAs through the interaction of TRBP with LGP2, as an antiviral defense system in mammalian cells.


Subject(s)
MicroRNAs/genetics , Nuclear Receptor Coactivators/genetics , RNA Helicases/genetics , Virus Diseases/genetics , Animals , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Caspases/genetics , Gene Expression Regulation/genetics , HeLa Cells , Humans , RNA Interference , Signal Transduction/genetics , Toll-Like Receptor 3/genetics , Virus Diseases/virology , Virus Replication/genetics
18.
RNA Biol ; 17(2): 264-280, 2020 02.
Article in English | MEDLINE | ID: mdl-31601146

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that play essential roles in the regulation of gene function by a mechanism known as RNA silencing. In a previous study, we revealed that miRNA-mediated silencing efficacy is correlated with the combinatorial thermodynamic properties of the miRNA seed-target mRNA duplex and the 5´-terminus of the miRNA duplex, which can be predicted using 'miScore'. In this study, a robust refined-miScore was developed by integrating the thermodynamic properties of various miRNA secondary structures and the latest thermodynamic parameters of wobble base-pairing, including newly established parameters for I:C base pairing. Through repeated random sampling and machine learning, refined-miScore models calculated with either melting temperature (Tm) or free energy change (ΔG) values were successfully built and validated in both wild-type and adenosine-to-inosine edited miRNAs. In addition to the previously reported contribution of the seed-target duplex and 5´-terminus region, the refined-miScore suggests that the central and 3´-terminus regions of the miRNA duplex also play a role in the thermodynamic regulation of miRNA-mediated silencing efficacy.


Subject(s)
Adenosine , Amino Acid Substitution , Inosine , MicroRNAs/genetics , Models, Biological , RNA Editing , RNA Interference , Algorithms , Machine Learning , Nucleic Acid Conformation , RNA Stability , RNA, Messenger/genetics , Thermodynamics
19.
Genes (Basel) ; 9(10)2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30347765

ABSTRACT

Exogenous double-stranded RNAs (dsRNAs) similar to viral RNAs induce antiviral RNA silencing or RNA interference (RNAi) in plants or invertebrates, whereas interferon (IFN) response is induced through activation of virus sensor proteins including Toll like receptor 3 (TLR3) or retinoic acid-inducible gene I (RIG-I) like receptors (RLRs) in mammalian cells. Both RNA silencing and IFN response are triggered by dsRNAs. However, the relationship between these two pathways has remained unclear. Laboratory of genetics and physiology 2 (LGP2) is one of the RLRs, but its function has remained unclear. Recently, we reported that LGP2 regulates endogenous microRNA-mediated RNA silencing by interacting with an RNA silencing enhancer, TAR-RNA binding protein (TRBP). Here, we investigated the contribution of other RLRs, RIG-I and melanoma-differentiation-associated gene 5 (MDA5), in the regulation of RNA silencing. We found that RIG-I, but not MDA5, also represses short hairpin RNA (shRNA)-induced RNAi by type-I IFN. Our finding suggests that RIG-I, but not MDA5, interacts with TRBP indirectly through LGP2 to function as an RNAi modulator in mammalian cells.

20.
Methods Mol Biol ; 1823: 167-183, 2018.
Article in English | MEDLINE | ID: mdl-29959681

ABSTRACT

Paired-end RNA sequencing (RNA-seq) is usually applied to the quantification of long transcripts such as messenger or long non-coding RNAs, in which case overlapping pairs are discarded. In contrast, RNA-seq on short RNAs (≤ 200 nt) is typically carried out in single-end mode, as the additional cost associated with paired-end would only translate into redundant sequence information. Here, we exploit paired-end sequencing of short RNAs as a strategy to filter out sequencing errors and apply this method to the identification of adenosine-to-inosine (A-to-I) RNA editing events on human precursor microRNA (pre-miRNA) and mature miRNA. Combined with RNA immunoprecipitation sequencing (RIP-seq) of A-to-I RNA editing enzymes, this method takes full advantage of deep sequencing technology to identify RNA editing sites with unprecedented resolution in terms of editing efficiency.


Subject(s)
Immunoprecipitation/methods , MicroRNAs/genetics , RNA Editing , Sequence Analysis, RNA/methods , HeLa Cells , Humans , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...