Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 180(1): 80-93, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36106615

ABSTRACT

BACKGROUND AND PURPOSE: Small interfering RNA (siRNA) targeting liver angiotensinogen lowers blood pressure, but its effects in hypertensive diabetes are unknown. EXPERIMENTAL APPROACH: To address this, TGR (mRen2)27 rats (angiotensin II-dependent hypertension model) were made diabetic with streptozotocin over 18 weeks and treated with either vehicle, angiotensinogen siRNA, the AT1 antagonist valsartan, the ACE inhibitor captopril, valsartan + siRNA or valsartan + captopril for the final 3 weeks. Mean arterial pressure (MAP) was measured via radiotelemetry. KEY RESULTS: MAP before treatment was 153 ± 2 mmHg. Diabetes resulted in albuminuria, accompanied by glomerulosclerosis and podocyte effacement, without a change in glomerular filtration rate. All treatments lowered MAP and cardiac hypertrophy, and the largest drop in MAP was observed with siRNA + valsartan. Treatment with siRNA lowered circulating angiotensinogen by >99%, and the lowest circulating angiotensin II and aldosterone levels occurred in the dual treatment groups. Angiotensinogen siRNA did not affect renal angiotensinogen mRNA expression, confirming its liver-specificity. Furthermore, only siRNA with or without valsartan lowered renal angiotensin I. All treatments lowered renal angiotensin II and the reduction was largest (>95%) in the siRNA + valsartan group. All treatments identically lowered albuminuria, whereas only siRNA with or without valsartan restored podocyte foot processes and reduced glomerulosclerosis. CONCLUSION AND IMPLICATIONS: Angiotensinogen siRNA exerts renoprotection in diabetic TGR (mRen2)27 rats and this relies, at least in part, on the suppression of renal angiotensin II formation from liver-derived angiotensinogen. Clinical trials should now address whether this is also beneficial in human diabetic kidney disease.


Subject(s)
Angiotensin II , Diabetes Mellitus, Experimental , Hypertension , Kidney Diseases , RNA, Small Interfering , Animals , Humans , Rats , Albuminuria , Angiotensin II/drug effects , Angiotensin II/genetics , Blood Pressure/drug effects , Blood Pressure/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Hypertension/drug therapy , Liver/metabolism , Renin/metabolism , Renin-Angiotensin System , Valsartan/pharmacology , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/prevention & control , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use
2.
J Am Heart Assoc ; 11(15): e026426, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35876413

ABSTRACT

Background A single dose of small interfering RNA (siRNA) targeting liver angiotensinogen eliminates hepatic angiotensinogen and lowers blood pressure. Angiotensinogen elimination raises concerns for clinical application because an angiotensin rise is needed to maintain perfusion pressure during hypovolemia. Here, we investigated whether conventional vasopressors can raise arterial pressure after angiotensinogen depletion. Methods and Results Spontaneously hypertensive rats on a low-salt diet were treated with siRNA (10 mg/kg fortnightly) for 4 weeks, supplemented during the final 2 weeks with fludrocortisone (6 mg/kg per day), the α-adrenergic agonist midodrine (4 mg/kg per day), or a high-salt diet (all groups n=6-7). Pressor responsiveness to angiotensin II and norepinephrine was assessed before and after siRNA administration. Blood pressure was measured via radiotelemetry. Depletion of liver angiotensinogen by siRNA lowered plasma angiotensinogen concentrations by 99.2±0.1% and mean arterial pressure by 19 mm Hg. siRNA-mediated blood pressure lowering was rapidly reversed by intravenous angiotensin II or norepinephrine, or gradually reversed by fludrocortisone or high salt intake. Midodrine had no effect. Unexpectedly, fludrocortisone partially restored plasma angiotensinogen concentrations in siRNA-treated rats, and nearly abolished plasma renin concentrations. To investigate whether this angiotensinogen originated from nonhepatic sources, fludrocortisone was administered to mice lacking hepatic angiotensinogen. Fludrocortisone did not increase angiotensinogen in these mice, implying that the rise in angiotensinogen in the siRNA-treated rats must have depended on the liver, most likely reflecting diminished cleavage by renin. Conclusions Intact pressor responsiveness to conventional vasopressors provides pharmacological means to regulate the blood pressure-lowering effect of angiotensinogen siRNA and may support future therapeutic implementation of siRNA.


Subject(s)
Hypertension , Midodrine , Angiotensin II/pharmacology , Angiotensinogen/genetics , Angiotensinogen/metabolism , Animals , Blood Pressure/physiology , Fludrocortisone , Hypertension/drug therapy , Hypertension/therapy , Mice , Norepinephrine , RNA, Small Interfering/pharmacology , Rats , Renin/genetics , Renin-Angiotensin System , Vasoconstrictor Agents/pharmacology , Vasoconstrictor Agents/therapeutic use
3.
Hypertension ; 79(10): 2115-2126, 2022 10.
Article in English | MEDLINE | ID: mdl-35904033

ABSTRACT

Multiple types of renin-angiotensin system (RAS) blockers exist, allowing interference with the system at the level of renin, angiotensin-converting enzyme, or the angiotensin II receptor. Yet, in particular, for the treatment of hypertension, the number of patients with uncontrolled hypertension continues to rise, either due to patient noncompliance or because of the significant renin rises that may, at least partially, overcome the effect of RAS blockade (RAS escape). New approaches to target the RAS are either direct antisense oligonucleotides that inhibit angiotensinogen RNA translation, or small interfering RNA (siRNA) that function via the RNA interference pathway. Since all angiotensins stem from angiotensinogen, lowering angiotensinogen has the potential to circumvent the RAS escape phenomenon. Moreover, antisense oligonucleotides and small interfering RNA require injections only every few weeks to months, which might reduce noncompliance. Of course, angiotensinogen suppression also poses a threat in situations where the RAS is acutely needed, for instance in women becoming pregnant during treatment, or in cases of emergency, when severe hypotension occurs. This review discusses all preclinical data on angiotensinogen suppression, as well as the limited clinical data that are currently available. It concludes that it is an exciting new tool to target the RAS with high specificity and a low side effect profile. Its long-term action might revolutionize pharmacotherapy, as it could overcome compliance problems. Preclinical and clinical programs are now carefully investigating its efficacy and safety profile, allowing an optimal introduction as a novel drug to treat cardiovascular and renal diseases in due time.


Subject(s)
Hypertension , Kidney Diseases , Angiotensinogen/genetics , Angiotensinogen/metabolism , Female , Humans , Oligonucleotides, Antisense/metabolism , Pregnancy , RNA, Small Interfering/pharmacology , Renin/metabolism , Renin-Angiotensin System
4.
Biomolecules ; 12(6)2022 06 13.
Article in English | MEDLINE | ID: mdl-35740952

ABSTRACT

BACKGROUND AND OBJECTIVE: In an experiment designed to explore the mechanisms of fludrocortisone-induced high blood pressure, we serendipitously observed aortic aneurysms in mice infused with fludrocortisone. The purpose of this study was to investigate whether fludrocortisone induces aortic pathologies in both normocholesterolemic and hypercholesterolemic mice. METHODS AND RESULTS: Male adult C57BL/6J mice were infused with either vehicle (85% polyethylene glycol 400 (PEG-400) and 15% dimethyl sulfoxide (DMSO); n = 5) or fludrocortisone (12 mg/kg/day dissolved in 85% PEG-400 and 15% DMSO; n = 15) for 28 days. Fludrocortisone-infused mice had higher systolic blood pressure, compared to mice infused with vehicle. Fludrocortisone induced aortic pathologies in 4 of 15 mice with 3 having pathologies in the ascending and aortic arch regions and 1 having pathology in both the ascending and descending thoracic aorta. No pathologies were noted in abdominal aortas. Subsequently, we infused either vehicle (n = 5/group) or fludrocortisone (n = 15/group) into male ApoE -/- mice fed a normal laboratory diet or LDL receptor -/- mice fed either normal or Western diet. Fludrocortisone increased systolic blood pressure, irrespective of mouse strain or diet. In ApoE -/- mice infused with fludrocortisone, 2 of 15 mice had ascending aortic pathologies, but no mice had abdominal aortic pathologies. In LDL receptor -/- mice fed normal diet, 5 had ascending/arch pathologies and 1 had pathologies in the ascending, arch, and suprarenal aortic regions. In LDL receptor -/- mice fed Western diet, 2 died of aortic rupture in either the descending thoracic or abdominal region, and 2 of the 13 survived mice had ascending/arch aortic pathologies. Aortic pathologies included hemorrhage, wall thickening or thinning, or dilation. Only ascending aortic diameter in LDLR -/- mice fed Western diet reached statistical significance, compared to their vehicle. CONCLUSION: Fludrocortisone induces aortic pathologies independent of hypercholesterolemia. As indicated by the findings in mouse studies, people who are taking or have taken fludrocortisone might have an increased risk of aortic pathologies.


Subject(s)
Angiotensin II , Aorta, Abdominal , Fludrocortisone , Angiotensin II/pharmacology , Animals , Aorta, Abdominal/pathology , Dimethyl Sulfoxide , Disease Models, Animal , Fludrocortisone/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Receptors, LDL
5.
Clin Sci (Lond) ; 136(9): 675-694, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35441670

ABSTRACT

Vascular endothelial growth factor antagonism with angiogenesis inhibitors in cancer patients induces a 'preeclampsia-like' syndrome including hypertension, proteinuria and elevated endothelin (ET)-1. Cyclo-oxygenase (COX) inhibition with aspirin is known to prevent the onset of preeclampsia in high-risk patients. In the present study, we hypothesised that treatment with aspirin would prevent the development of angiogenesis inhibitor-induced hypertension and kidney damage. Our aims were to compare the effects of low-dose (COX-1 inhibition) and high-dose (dual COX-1 and COX-2 inhibition) aspirin on blood pressure, vascular function, oxidative stress, ET-1 and prostanoid levels and kidney damage during angiogenesis-inhibitor therapy in rodents. To this end, Wistar Kyoto rats were treated with vehicle, angiogenesis inhibitor (sunitinib) alone or in combination with low- or high-dose aspirin for 8 days (n=5-7/group). Our results demonstrated that prostacyclin (PGI2) and ET-1 were increased during angiogenesis-inhibitor therapy, while thromboxane (TXA2) was unchanged. Both low- and high-dose aspirin blunted angiogenesis inhibitor-induced hypertension and vascular superoxide production to a similar extent, whereas only high-dose aspirin prevented albuminuria. While circulating TXA2 and prostaglandin F2α levels were reduced by both low- and high-dose aspirin, circulating and urinary levels PGI2 were only reduced by high-dose aspirin. Lastly, treatment with aspirin did not significantly affect ET-1 or vascular function. Collectively our findings suggest that prostanoids contribute to the development of angiogenesis inhibitor-induced hypertension and renal damage and that targeting the prostanoid pathway could be an effective strategy to mitigate the unwanted cardiovascular and renal toxicities associated with angiogenesis inhibitors.


Subject(s)
Hypertension , Pre-Eclampsia , Angiogenesis Inhibitors/therapeutic use , Animals , Aspirin/pharmacology , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Endothelin-1/metabolism , Epoprostenol/metabolism , Epoprostenol/pharmacology , Epoprostenol/therapeutic use , Female , Humans , Hypertension/chemically induced , Hypertension/drug therapy , Hypertension/metabolism , Kidney/metabolism , Pre-Eclampsia/chemically induced , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Pregnancy , Prostaglandin-Endoperoxide Synthases/metabolism , Rats , Vascular Endothelial Growth Factor A/metabolism
6.
J Cardiovasc Pharmacol ; 78(Suppl 6): S53-S62, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34840262

ABSTRACT

ABSTRACT: In recent years, perivascular adipose tissue (PVAT) research has gained special attention in an effort to understand its involvement in vascular function. PVAT is recognized as an important endocrine organ that secretes procontractile and anticontractile factors, including components of the renin-angiotensin-aldosterone system, particularly angiotensinogen (AGT). This review critically addresses the occurrence of AGT in PVAT, its release into the blood stream, and its contribution to the generation and effects of angiotensins (notably angiotensin-(1-7) and angiotensin II) in the vascular wall. It describes that the introduction of transgenic animals, expressing AGT at 0, 1, or more specific location(s), combined with the careful measurement of angiotensins, has revealed that the assumption that PVAT independently generates angiotensins from locally synthesized AGT is incorrect. Indeed, selective deletion of AGT from adipocytes did not lower circulating AGT, neither under a control diet nor under a high-fat diet, and only liver-specific AGT deletion resulted in the disappearance of AGT from blood plasma and adipose tissue. An entirely novel scenario therefore develops, supporting local angiotensin generation in PVAT that depends on the uptake of both AGT and renin from blood, in addition to the possibility that circulating angiotensins exert vascular effects. The review ends with a summary of where we stand now and recommendations for future research.


Subject(s)
Adipose Tissue/metabolism , Angiotensinogen/metabolism , Blood Vessels/metabolism , Renin-Angiotensin System , Vasoconstriction , Vasodilation , Adipose Tissue/physiopathology , Blood Vessels/physiopathology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Humans , Signal Transduction
7.
Clin Sci (Lond) ; 135(14): 1727-1731, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34291792

ABSTRACT

Although the existence of a brain renin-angiotensin system (RAS) had been proposed five decades ago, we still struggle to understand how it functions. The main reason for this is the virtual lack of renin at brain tissue sites. Moreover, although renin's substrate, angiotensinogen, appears to be synthesized locally in the brain, brain angiotensin (Ang) II disappeared after selective silencing of hepatic angiotensinogen. This implies that brain Ang generation depends on hepatic angiotensinogen after all. Rodrigues et al. (Clin Sci (Lond) (2021) 135:1353-1367) generated a transgenic mouse model overexpressing full-length rat angiotensinogen in astrocytes, and observed massively elevated brain Ang II levels, increased sympathetic nervous activity and vasopressin, and up-regulated erythropoiesis. Yet, blood pressure and kidney function remained unaltered, and surprisingly no other Ang metabolites occurred in the brain. Circulating renin was suppressed. This commentary critically discusses these findings, concluding that apparently in the brain, overexpressed angiotensinogen can be cleaved by an unidentified non-renin enzyme, yielding Ang II directly, which then binds to Ang receptors, allowing no metabolism by angiotensinases like ACE2 and aminopeptidase A. Future studies should now unravel the identity of this non-renin enzyme, and determine whether it also contributes to Ang II generation at brain tissue sites in wildtype animals. Such studies should also re-evaluate the concept that Ang-(1-7) and Ang III, generated by ACE2 and aminopeptidase A, respectively, have important functions in the brain.


Subject(s)
Brain/metabolism , Hypertension/physiopathology , Renin-Angiotensin System/physiology , Renin/metabolism , Angiotensin II/metabolism , Humans , Hypertension/metabolism , Receptors, Angiotensin/metabolism
11.
Am J Physiol Renal Physiol ; 320(4): F654-F668, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33586496

ABSTRACT

Chronic kidney disease contributes to hypertension, but the mechanisms are incompletely understood. To address this, we applied the 5/6th nephrectomy rat model to characterize hypertension and the response to dietary salt and renin-angiotensin inhibition. 5/6th nephrectomy caused low-renin, salt-sensitive hypertension with hyperkalemia and unsuppressed aldosterone. Compared with sham rats, 5/6th nephrectomized rats had lower Na+/H+ exchanger isoform 3, Na+-K+-2Cl- cotransporter, Na+-Cl- cotransporter, α-epithelial Na+ channel (ENaC), and Kir4.1 levels but higher serum and glucocorticoid-regulated kinase 1, prostasin, γ-ENaC, and Kir5.1 levels. These differences correlated with plasma renin, aldosterone, and/or K+. On a normal-salt diet, adrenalectomy (0 ± 9 mmHg) and spironolactone (-11 ± 10 mmHg) prevented a progressive rise in blood pressure (10 ± 8 mmHg), and this was enhanced in combination with losartan (-41 ± 12 and -43 ± 9 mmHg). A high-salt diet caused skin Na+ and water accumulation and aggravated hypertension that could only be attenuated by spironolactone (-16 ± 7 mmHg) and in which the additive effect of losartan was lost. Spironolactone also increased natriuresis, reduced skin water accumulation, and restored vasorelaxation. In summary, in the 5/6th nephrectomy rat chronic kidney disease model, salt-sensitive hypertension develops with a selective increase in γ-ENaC and despite appropriate transporter adaptations to low renin and hyperkalemia. With a normal-salt diet, hypertension in 5/6th nephrectomy depends on angiotensin II and aldosterone, whereas a high-salt diet causes more severe hypertension mediated through the mineralocorticoid receptor.NEW & NOTEWORTHY Chronic kidney disease (CKD) causes salt-sensitive hypertension, but the interactions between dietary salt and the renin-angiotensin system are incompletely understood. In rats with CKD on a normal-salt diet targeting aldosterone, the mineralocorticoid receptor (MR) and especially angiotensin II reduced blood pressure. On a high-salt diet, however, only MR blockade attenuated hypertension. These results reiterate the importance of dietary salt restriction to maintain renin-angiotensin system inhibitor efficacy and specify the MR as a target in CKD.


Subject(s)
Blood Pressure/drug effects , Renal Insufficiency, Chronic/drug therapy , Renin-Angiotensin System/drug effects , Renin/pharmacology , Sodium Chloride, Dietary/toxicity , Aldosterone/blood , Angiotensin II/pharmacology , Animals , Antihypertensive Agents/pharmacology , Rats , Receptors, Mineralocorticoid/drug effects , Receptors, Mineralocorticoid/metabolism , Renal Insufficiency, Chronic/chemically induced , Sodium Chloride, Dietary/metabolism , Spironolactone/pharmacology
12.
Clin Sci (Lond) ; 135(2): 259-274, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33404046

ABSTRACT

Brain renin-angiotensin system (RAS) activation is thought to mediate deoxycorticosterone acetate (DOCA)-salt hypertension, an animal model for human primary hyperaldosteronism. Here, we determined whether brainstem angiotensin II is generated from locally synthesized angiotensinogen and mediates DOCA-salt hypertension. To this end, chronic DOCA-salt-hypertensive rats were treated with liver-directed siRNA targeted to angiotensinogen, the angiotensin II type 1 receptor antagonist valsartan, or the mineralocorticoid receptor antagonist spironolactone (n = 6-8/group). We quantified circulating angiotensinogen and renin by enzyme-kinetic assay, tissue angiotensinogen by Western blotting, and angiotensin metabolites by LC-MS/MS. In rats without DOCA-salt, circulating angiotensin II was detected in all rats, whereas brainstem angiotensin II was detected in 5 out of 7 rats. DOCA-salt increased mean arterial pressure by 19 ± 1 mmHg and suppressed circulating renin and angiotensin II by >90%, while brainstem angiotensin II became undetectable in 5 out of 7 rats (<6 fmol/g). Gene silencing of liver angiotensinogen using siRNA lowered circulating angiotensinogen by 97 ± 0.3%, and made brainstem angiotensin II undetectable in all rats (P<0.05 vs. non-DOCA-salt), although brainstem angiotensinogen remained intact. As expected for this model, neither siRNA nor valsartan attenuated the hypertensive response to DOCA-salt, whereas spironolactone normalized blood pressure and restored brain angiotensin II together with circulating renin and angiotensin II. In conclusion, despite local synthesis of angiotensinogen in the brain, brain angiotensin II depended on circulating angiotensinogen. That DOCA-salt suppressed circulating and brain angiotensin II in parallel, while spironolactone simultaneously increased brain angiotensin II and lowered blood pressure, indicates that DOCA-salt hypertension is not mediated by brain RAS activation.


Subject(s)
Angiotensin II/metabolism , Hypertension/physiopathology , Renin-Angiotensin System/drug effects , Angiotensinogen/blood , Animals , Brain/metabolism , Brain Stem/metabolism , Desoxycorticosterone Acetate/administration & dosage , Hypertension/chemically induced , Male , Rats, Sprague-Dawley , Renin/blood , Sodium Chloride, Dietary/administration & dosage , Valsartan/pharmacology
13.
Curr Opin Nephrol Hypertens ; 29(2): 180-189, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31895165

ABSTRACT

PURPOSE OF REVIEW: To summarize all available data on targeting angiotensinogen with RNA-based therapeutics as a new tool to combat cardiovascular diseases. RECENT FINDINGS: Liver-targeted, stable antisense oligonucleotides and small interfering RNA targeting angiotensinogen are now available, and may allow treatment with at most a few injections per year, thereby improving adherence. Promising results have been obtained in hypertensive animal models, as well as in rodent models of atherosclerosis, polycystic kidney disease and pulmonary fibrosis. The next step will be to evaluate the optimal degree of suppression, synergy with existing renin-angiotensin-aldosterone system blockers, and to determine harmful effects of suppressing angiotensinogen in the context of common comorbidities, such as heart failure and chronic kidney disease. SUMMARY: Targeting angiotensinogen with RNA-based therapeutics is a promising new tool to treat hypertension and diseases beyond. Their long-lasting effects are particularly exciting, and if translated to a clinical application of at most a few administrations per year, may help to eliminate nonadherence.


Subject(s)
Angiotensinogen/antagonists & inhibitors , Hypertension/drug therapy , Angiotensinogen/genetics , Animals , Humans , Oligonucleotides, Antisense/therapeutic use , RNA, Small Interfering/therapeutic use , Renin-Angiotensin System/drug effects
14.
J Hypertens ; 38(4): 755-764, 2020 04.
Article in English | MEDLINE | ID: mdl-31790054

ABSTRACT

OBJECTIVES: Combined angiotensin receptor--neprilysin inhibition (ARNI) reduces glomerulosclerosis better than single angiotensin receptor blockade (ARB) in diabetic, hypertensive rats. The renoprotective mechanism remains unknown, but may depend on superior blood pressure control, improved renal hemodynamics, suppressed renal inflammation or prevention of podocyte loss. METHODS: To address this, TGR(mREN2)27 rats (a model of angiotensin II-dependent hypertension) were made diabetic for 12 weeks and treated with vehicle (n = 10), valsartan (ARB; n = 7) or sacubitril/valsartan (ARNI; n = 8) for the final 3 weeks. Arterial pressure was measured via radiotelemetry. RESULTS: Sacubitril/valsartan lowered mean arterial pressure by -50 ±â€Š4 mmHg and valsartan by -43 ±â€Š4 mmHg (P = 0.3). Both treatments lowered albuminuria, but only sacubitril/valsartan maintained high urinary atrial natriuretic peptide, improved glycemic control and protected podocyte integrity, reflected by increased nephrin expression and suppression of transient receptor potential canonical 6 and regulator of calcineurin 1. This resulted in markedly reduced glomerulosclerosis (P < 0.05 vs. control and valsartan). Despite higher effective renal plasma flow and glomerular filtration rates, sacubitril/valsartan did neither improve filtration fraction nor renal immune cell infiltration. CONCLUSION: Sacubitril/valsartan offers drug-class-specific renoprotection in a preclinical model of diabetes and hypertension. Renoprotection is unrelated to antihypertensive efficacy, renal hemodynamics or inflammation, but may be related to protective effects of natriuretic peptides on podocyte integrity.


Subject(s)
Aminobutyrates/therapeutic use , Angiotensin Receptor Antagonists/therapeutic use , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Neprilysin/antagonists & inhibitors , Podocytes/drug effects , Tetrazoles/therapeutic use , Valsartan/therapeutic use , Aminobutyrates/pharmacology , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Antihypertensive Agents/pharmacology , Biphenyl Compounds , Blood Pressure/drug effects , Diabetes Mellitus/pathology , Drug Combinations , Hypertension/pathology , Male , Podocytes/pathology , Protective Agents/pharmacology , Protective Agents/therapeutic use , Rats , Tetrazoles/pharmacology , Valsartan/pharmacology
15.
Cardiovasc Res ; 116(10): 1779-1790, 2020 08 01.
Article in English | MEDLINE | ID: mdl-31593221

ABSTRACT

AIMS: Although effective in preventing tumour growth, angiogenesis inhibitors cause off-target effects including cardiovascular toxicity and renal injury, most likely via endothelin (ET)-1 up-regulation. ET-1 via stimulation of the ETA receptor has pro-hypertensive actions whereas stimulation of the ETB receptor can elicit both pro- or anti-hypertensive effects. In this study, our aim was to determine the efficacy of selective ETA vs. dual ETA/B receptor blockade for the prevention of angiogenesis inhibitor-induced hypertension and albuminuria. METHODS AND RESULTS: Male Wistar Kyoto (WKY) rats were treated with vehicle, sunitinib (angiogenesis inhibitor; 14 mg/kg/day) alone or in combination with macitentan (ETA/B receptor antagonist; 30 mg/kg/day) or sitaxentan (selective ETA receptor antagonist; 30 or 100 mg/kg/day) for 8 days. Compared with vehicle, sunitinib treatment caused a rapid and sustained increase in mean arterial pressure of ∼25 mmHg. Co-treatment with macitentan or sitaxentan abolished the pressor response to sunitinib. Sunitinib did not induce endothelial dysfunction. However, it was associated with increased aortic, mesenteric, and renal oxidative stress, an effect that was absent in mesenteric arteries of the macitentan and sitaxentan co-treated groups. Albuminuria was greater in the sunitinib- than vehicle-treated group. Co-treatment with sitaxentan, but not macitentan, prevented this increase in albuminuria. Sunitinib treatment increased circulating and urinary prostacyclin levels and had no effect on thromboxane levels. These increases in prostacyclin were blunted by co-treatment with sitaxentan. CONCLUSIONS: Our results demonstrate that both selective ETA and dual ETA/B receptor antagonism prevents sunitinib-induced hypertension, whereas sunitinib-induced albuminuria was only prevented by selective ETA receptor antagonism. In addition, our results uncover a role for prostacyclin in the development of these effects. In conclusion, selective ETA receptor antagonism is sufficient for the prevention of sunitinib-induced hypertension and renal injury.


Subject(s)
Albuminuria/prevention & control , Antihypertensive Agents/pharmacology , Arteries/drug effects , Blood Pressure/drug effects , Endothelin A Receptor Antagonists/pharmacology , Endothelin B Receptor Antagonists/pharmacology , Hypertension/prevention & control , Albuminuria/chemically induced , Albuminuria/metabolism , Albuminuria/pathology , Animals , Arteries/metabolism , Arteries/physiopathology , Disease Models, Animal , Epoprostenol/metabolism , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/physiopathology , Isoxazoles/pharmacology , Kidney/drug effects , Kidney/metabolism , Kidney/physiopathology , Male , Oxidative Stress/drug effects , Pyrimidines/pharmacology , Rats, Inbred WKY , Receptor, Endothelin A/drug effects , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/drug effects , Receptor, Endothelin B/metabolism , Signal Transduction , Sulfonamides/pharmacology , Sunitinib , Thiophenes/pharmacology
16.
Hypertension ; 73(6): 1249-1257, 2019 06.
Article in English | MEDLINE | ID: mdl-31030610

ABSTRACT

Small interfering RNAs (siRNAs) targeting hepatic angiotensinogen ( Agt) may provide long-lasting antihypertensive effects, but the optimal approach remains unclear. Here, we assessed the efficacy of a novel AGT siRNA in spontaneously hypertensive rats. Rats were treated with vehicle, siRNA (10 mg/kg fortnightly; subcutaneous), valsartan (31 mg/kg per day; oral), captopril (100 mg/kg per day; oral), valsartan+siRNA, or captopril+valsartan for 4 weeks (all groups, n=8). Mean arterial pressure (recorded via radiotelemetry) was lowered the most by valsartan+siRNA (-68±4 mm Hg), followed by captopril+valsartan (-54±4 mm Hg), captopril (-23±2 mm Hg), siRNA (-14±2 mm Hg), and valsartan (-10±2 mm Hg). siRNA and captopril monotherapies improved cardiac hypertrophy equally, but less than the dual therapies, which also lowered NT-proBNP (N-terminal pro-B-type natriuretic peptide). Glomerular filtration rate, urinary NGAL (neutrophil gelatinase-associated lipocalin), and albuminuria were unaffected by treatment. siRNA lowered circulating AGT by 97.9±1.0%, and by 99.8±0.1% in combination with valsartan. Although siRNA greatly reduced renal Ang (angiotensin) I, only valsartan+siRNA suppressed circulating and renal Ang II. This coincided with decreased renal sodium hydrogen exchanger type 3 and phosphorylated sodium chloride cotransporter abundances. Renin and plasma K+ increased with every treatment, but especially during valsartan+siRNA; no effects on aldosterone were observed. Collectively, these data indicate that Ang II elimination requires >99% suppression of circulating AGT. Maximal blockade of the renin-angiotensin system, achieved by valsartan+siRNA, yielded the greatest reduction in blood pressure and cardiac hypertrophy, whereas AGT lowering alone was as effective as conventional renin-angiotensin system inhibitors. Given its stable and sustained efficacy, lasting weeks, RNA interference may offer a unique approach to improving therapy adherence and treating hypertension.


Subject(s)
Angiotensinogen/genetics , Blood Pressure/physiology , Gene Expression Regulation , Hypertension/drug therapy , Liver/metabolism , RNA, Small Interfering/administration & dosage , Angiotensinogen/biosynthesis , Animals , Blood Pressure/drug effects , Disease Models, Animal , Hypertension/genetics , Hypertension/metabolism , Injections, Subcutaneous , Male , RNA/genetics , RNA, Small Interfering/pharmacokinetics , Rats , Rats, Inbred SHR
17.
Clin Sci (Lond) ; 132(8): 839-850, 2018 04 30.
Article in English | MEDLINE | ID: mdl-29712882

ABSTRACT

The existence of a so-called brain renin-angiotensin system (RAS) is controversial. Given the presence of the blood-brain barrier, angiotensin generation in the brain, if occurring, should depend on local synthesis of renin and angiotensinogen. Yet, although initially brain-selective expression of intracellular renin was reported, data in intracellular renin knockout animals argue against a role for this renin in angiotensin generation. Moreover, renin levels in brain tissue at most represented renin in trapped blood. Additionally, in neurogenic hypertension brain prorenin up-regulation has been claimed, which would generate angiotensin following its binding to the (pro)renin receptor. However, recent studies reported no evidence for prorenin expression in the brain, nor for its selective up-regulation in neurogenic hypertension, and the (pro)renin receptor rather displays RAS-unrelated functions. Finally, although angiotensinogen mRNA is detectable in the brain, brain angiotensinogen protein levels are low, and even these low levels might be an overestimation due to assay artefacts. Taken together, independent angiotensin generation in the brain is unlikely. Indeed, brain angiotensin levels are extremely low, with angiotensin (Ang) I levels corresponding to the small amounts of Ang I in trapped blood plasma, and Ang II levels at most representing Ang II bound to (vascular) brain Ang II type 1 receptors. This review concludes with a unifying concept proposing the blood origin of angiotensin in the brain, possibly resulting in increased levels following blood-brain barrier disruption (e.g. due to hypertension), and suggesting that interfering with either intracellular renin or the (pro)renin receptor has consequences in an RAS-independent manner.


Subject(s)
Angiotensinogen/biosynthesis , Brain/metabolism , Renin-Angiotensin System , Renin/metabolism , Animals , Humans
18.
Eur J Pharmacol ; 824: 128-132, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29432709

ABSTRACT

Increasing the degree of renin-angiotensin system (RAS) blockade by combining ≥2 RAS blockers marginally increases efficacy, but results in more side effects. Hence, interference with other systems is currently being investigated, like potentiation of natriuretic peptides with neprilysin inhibitors. However, the neprilysin inhibitor thiorphan was recently found to increase endothelin-1 when administered to TGR(mREN2)27 (Ren2) rats on top of RAS blockade. Here we investigated whether this effect is thiorphan-specific, by comparing the neprilysin inhibitors thiorphan and sacubitril, administered by osmotic minipumps at a low or high dose for 7 days, in Ren2 rats. Plasma and urinary levels of endothelin-1, atrial and brain natriuretic peptide (ANP, BNP) and their second messenger cyclic guanosine 3'5' monophosphate (cGMP) were monitored. No significant differences were found in the plasma concentrations of endothelin-1, cGMP, ANP and BNP after treatment, although plasma ANP tended to be higher in the high-dose thiorphan treatment group and the low- and high-dose sacubitril treatment groups, compared with vehicle. Urinary endothelin-1 increased in the low-dose thiorphan and high-dose sacubitril groups, compared with baseline, although significance was reached for the former only. Urinary cGMP rose significantly in the high-dose sacubitril treatment group compared with baseline. Both urinary endothelin-1 and cGMP were significantly higher in the high-dose sacubitril group compared with the low-dose sacubitril group. In conclusion, endothelin-1 upregulation occurs with both thiorphan and sacubitril, and is particularly apparent in neprilysin-rich organs like the kidney. High renal neprilysin levels most likely also explain why sacubitril increased cGMP in urine only.


Subject(s)
Endothelin-1/metabolism , Kidney/drug effects , Kidney/metabolism , Neprilysin/antagonists & inhibitors , Protease Inhibitors/pharmacology , Aminobutyrates/pharmacology , Animals , Biphenyl Compounds , Drug Combinations , Rats , Tetrazoles/pharmacology , Thiorphan/pharmacology , Valsartan
20.
Hypertension ; 69(6): 1136-1144, 2017 06.
Article in English | MEDLINE | ID: mdl-28396529

ABSTRACT

Because of the presence of the blood-brain barrier, brain renin-angiotensin system activity should depend on local (pro)renin synthesis. Indeed, an intracellular form of renin has been described in the brain, but whether it displays angiotensin (Ang) I-generating activity (AGA) is unknown. Here, we quantified brain (pro)renin, before and after buffer perfusion of the brain, in wild-type mice, renin knockout mice, deoxycorticosterone acetate salt-treated mice, and Ang II-infused mice. Brain regions were homogenized and incubated with excess angiotensinogen to detect AGA, before and after prorenin activation, using a renin inhibitor to correct for nonrenin-mediated AGA. Renin-dependent AGA was readily detectable in brain regions, the highest AGA being present in brain stem (>thalamus=cerebellum=striatum=midbrain>hippocampus=cortex). Brain AGA increased marginally after prorenin activation, suggesting that brain prorenin is low. Buffer perfusion reduced AGA in all brain areas by >60%. Plasma renin (per mL) was 40× to 800× higher than brain renin (per gram). Renin was undetectable in plasma and brain of renin knockout mice. Deoxycorticosterone acetate salt and Ang II suppressed plasma renin and brain renin in parallel, without upregulating brain prorenin. Finally, Ang I was undetectable in brains of spontaneously hypertensive rats, while their brain/plasma Ang II concentration ratio decreased by 80% after Ang II type 1 receptor blockade. In conclusion, brain renin levels (per gram) correspond with the amount of renin present in 1 to 20 µL of plasma. Brain renin disappears after buffer perfusion and varies in association with plasma renin. This indicates that brain renin represents trapped plasma renin. Brain Ang II represents Ang II taken up from blood rather than locally synthesized Ang II.


Subject(s)
Amides/pharmacology , Angiotensin II/pharmacology , Blood-Brain Barrier/drug effects , Brain/metabolism , Fumarates/pharmacology , Hypertension/drug therapy , Renin-Angiotensin System/drug effects , Angiotensinogen/metabolism , Animals , Blood Pressure/drug effects , Blood-Brain Barrier/metabolism , Brain/drug effects , Desoxycorticosterone Acetate/pharmacology , Disease Models, Animal , Mice , Mice, Knockout , Random Allocation , Rats , Rats, Inbred SHR , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...