Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 14(10): 2243-2251, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31513382

ABSTRACT

Ralstonia solanacearum strains are devastating plant pathogens with global distribution, a wide host range, and genetic diversity, and they are now also referred to as the R. solanacearum species complex (RSSC). RSSC strains employ the quorum sensing (QS) system composed of the phcBSR operon to regulate their virulence on plants. The RSSC strains previously examined produce either (R)-methyl 3-hydroxymyristate (3-OH MAME) or (R)-methyl 3-hydroxypalmitate (3-OH PAME) as their QS signals. Analogously, the phylogenetic analyses of the signal synthase PhcB and the signal receptor PhcS from 15 RSSC strains revealed that these proteins have two clades dependent on their QS signal types. However, the biochemical mechanism underlying this selectivity of QS signal production remains to be elucidated. We demonstrated that the PhcB methyltransferases synthesize QS signals from the cognate fatty acids (R)-3-hydroxymyristic acid or (R)-3-hydroxypalmitic acid. The RSSC strains used here produced both fatty acids, and thus the selectivity of QS signal production depends on the activity of PhcB enzymes. On the other hand, the enantioselective supply of the precursors functioned in the production of enantiopure QS signals. The opposite QS signals weakly induced the production of virulence factors in the RSSC strains. Furthermore, the complementation of the phcB gene encoding the 3-OH PAME-type synthase to the phcB-deletion mutant of the 3-OH MAME-producing strain did not rescue its virulence on tomato plants. Taken together, we propose that the specific production of 3-OH MAME/3-OH PAME ensures full virulence of the RSSC strains.


Subject(s)
Bacterial Proteins/metabolism , Methyltransferases/metabolism , Quorum Sensing/physiology , Ralstonia solanacearum/physiology , Virulence Factors/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/genetics , Gene Expression/physiology , Methyltransferases/chemistry , Methyltransferases/genetics , Myristates/metabolism , Myristic Acids/chemistry , Myristic Acids/metabolism , Palmitic Acids/chemistry , Palmitic Acids/metabolism , Ralstonia solanacearum/pathogenicity , Stereoisomerism , Substrate Specificity , Transcriptome/physiology
2.
Mol Plant Pathol ; 20(3): 334-345, 2019 03.
Article in English | MEDLINE | ID: mdl-30312504

ABSTRACT

The soil-borne bacterium Ralstonia solanacearum invades the roots and colonizes the intercellular spaces and then the xylem. The expression of lecM, encoding a lectin LecM, is induced by an OmpR family response regulator HrpG in R. solanacearum strain OE1-1. LecM contributes to the attachment of strain OE1-1 to the host cells of intercellular spaces. OE1-1 produces methyl 3-hydroxymyristate (3-OH MAME) through a methyltransferase (PhcB) and extracellularly secretes the chemical as a quorum sensing (QS) signal, which activates QS. The expression of lecM is also induced by the PhcA virulence regulator functioning through QS, and the resulting LecM is implicated in the QS-dependent production of major exopolysaccharide EPS I and the aggregation of OE1-1 cells. To investigate the function of LecM in QS, we analysed the transcriptome of R. solanacearum strains generated by RNA sequencing technology. In the lecM mutant, the expression of positively QS-regulated genes and negatively QS-regulated genes was down-regulated (by >90%) and up-regulated (by ~60%), respectively. However, phcB and phcA in the lecM mutant were expressed at levels similar to those in strain OE1-1. The lecM mutant produced significantly less ralfuranone and exhibited a significantly greater swimming motility, which were positively and negatively regulated by QS, respectively. In addition, the extracellular 3-OH MAME content of the lecM mutant was significantly lower than that of OE1-1. The application of 3-OH MAME more strongly increased EPS I production in the phcB-deleted mutant and strain OE1-1 than in the lecM mutant. Thus, the QS-dependent production of LecM contributes to the QS signalling pathway.


Subject(s)
Lectins/metabolism , Quorum Sensing/physiology , Ralstonia solanacearum/metabolism , Ralstonia solanacearum/pathogenicity , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Signal Transduction/physiology , Transcription Factors/metabolism , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...