Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 31(22): 6085-91, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-25996798

ABSTRACT

Effects of the addition of water on solvation layers of imidazolium-type room temperature ionic liquids (RT-ILs) have been studied through force curve measurements of atomic force microscopy (AFM). Two kinds of RT-ILs were employed in this study; one is a hydrophilic RT-IL (1-butyl-3-methylimidazolium tetrafluoroborate, BmimBF4), and the other is a hydrophobic one (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, EmimTFSI). These RT-ILs form solvation layers on hydrophilic solid substances (i.e., silica and mica) in the absence of added water. The addition of water into BmimBF4 resulted in the disruption of the solvation layers and then the formation of an interfacial water phase on silica. In contrast, the formation of the interfacial water phase was not evidenced on mica because of the absence of hydrogen-bonding sites on the mica surface. Interestingly, the addition of water into EmimTFSI induced the formation of the interfacial water phase on the two solid surfaces. In the EmimTFSI system, importantly, significantly greater adhesion forces were observed on silica than on mica. This reflects the different formation mechanisms of the interfacial water phase on the two solid surfaces. We conclude that the hydrogen bonding is a key factor in determining whether water molecules can be adsorbed on the solid surfaces, but it is also necessary to take into account the hydrophilic/hydrophobic nature of the RT-ILs.

2.
J Oleo Sci ; 62(7): 489-98, 2013.
Article in English | MEDLINE | ID: mdl-23823915

ABSTRACT

Cationic gemini surfactants having a quaternary ammonium headgroup have been synthesized from oleic acid. The hydrocarbon chain is covalently bound to the terminal carbonyl group of oleic acid via an amide bond, while the quaternary ammonium headgroup is introduced onto the cis double bond of oleic acid. The Krafft temperature of these surfactants drops below room temperature (ca. 25°C) when the counterion is exchanged from Br⁻ to Cl⁻. The aqueous solution properties of the Cl series of surfactants have been assessed by means of pyrene fluorescence, dynamic light scattering (DLS), and static surface tension measurements. An increased hydrocarbon chain length results in a lower critical micelle concentration (cmc) and a higher adsorption efficiency at the air/aqueous solution interface. Surface tension measurements suggest the formation of premicelles at concentrations below cmc, whereas, above cmc, DLS indicates the formation of micellar aggregates whose diameter ranges from 5 to 10 nm. We, furthermore, characterized the adsorption of these surfactants to the silica/aqueous solution interface and observed their spontaneous adsorption to the solid surface by electrostatic and intermolecular hydrophobic interactions. The combination of soft-contact imaging atomic force microscopy (AFM) and force-curve data suggests bilayer formation above cmc, which is reflective of the large packing parameter of the gemini surfactants. Interestingly, we found the repulsive interaction observed during compression of the adsorbed layer to be relatively weak, as a result of the low adsorption density and/or the loose molecular packing arrangement, which arises from the asymmetric structure.


Subject(s)
Micelles , Oleic Acid/chemistry , Quaternary Ammonium Compounds/chemistry , Silicon Dioxide/chemistry , Surface-Active Agents/chemistry , Adsorption , Hydrophobic and Hydrophilic Interactions , Quaternary Ammonium Compounds/chemical synthesis , Static Electricity , Surface-Active Agents/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...