Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(20): 14777-14786, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716819

ABSTRACT

Nuclear magnetic resonance (NMR) shielding constants have been calculated for Ni(II) bis(pentafluorophenyl)norcorrole and its face-to-face stacked dimer at the Hartree-Fock (HF), second-order Møller-Plesset perturbation theory (MP2), complete-active-space self-consistent-field (CASSCF) levels as well as at density functional theory (DFT) levels using several functionals. The calculated 1H NMR shielding constants agree rather well with the experimental ones. The shielding constants of N and Ni calculated at DFT, HF, and MP2 levels differ from those obtained in the CASSCF calculations due to near-degeneracy effects at the Ni atom. The calculated magnetically induced current densities show that the monomer is antiaromatic, sustaining a strong global paratropic ring current, and the dimer is aromatic, sustaining a strong diatropic ring current. Qualitatively the same current density is obtained at the employed levels of theory. The most accurate ring-current strengths are probably obtained at the MP2 level. The aromatic dimer has a short intermolecular distance of less than 3 Å. The intermolecular interaction changes the nature of the frontier orbitals leading to a formal double bond between the norcorrole macrocycles.

2.
Chemistry ; 30(39): e202400292, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38769938

ABSTRACT

Recently, π-π stacked antiaromatic π-systems have received considerable attention because they can exhibit stacked-ring aromaticity due to substantial intermolecular orbital interactions. Here, we report three antiaromatic norcorrole dimers that self-assemble to form supramolecular architectures through chiral self-sorting. A 2,2'-linked norcorrole dimer with 3,5-di-tert-butylphenyl groups forms a π-stacked dimer both in solid and solution states via homochiral self-sorting. Its association constant in solution is (3.6±1.7)×105 M-1 at 20 °C. In the solid state, 3,3'-linked norcorrole dimers with 3,5-di-tert-butylphenyl and phenyl groups afford macrocyclic and helical supramolecular assemblies via heterochiral and homochiral self-sorting, respectively. Notably, the subtle modification in the substituent resulted in a complete change in the structure of the aggregates and the chiral self-sorting mode. The present findings demonstrate that structural manipulation in antiaromatic monomer units leads to the formation of various supramolecular assemblies on the basis of the attractive interactions between antiaromatic π-systems.

3.
J Am Chem Soc ; 146(13): 9311-9317, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38502926

ABSTRACT

A π-conjugated molecule with one electronic spin often forms a π-stacked dimer through molecular orbital interactions between two unpaired electrons. The bonding is recognized as a multicentered two-electron interaction between the two π-conjugated molecules. Here, we disclose a multicentered bonding interaction between two antiaromatic molecules involving four electrons. We have synthesized an antiaromatic porphyrin analogue, Ni(II) bis(pentafluorophenyl)norcorrole. Its dimer adopts a face-to-face stacked structure with an extremely short stacking distance of 2.97 Å. The close stacking originates from a multicenter four-electron bonding interaction between the two molecules. The bonding electrons were experimentally observed via synchrotron X-ray diffraction analysis and corroborated by theoretical calculations. The intermolecular interaction of the molecular orbitals imparts the stacked dimer with aromatic character that is distinctly different from that of its monomer.

4.
Angew Chem Int Ed Engl ; 61(6): e202114230, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34862699

ABSTRACT

For the creation of next-generation organic electronic materials, the integration of π-systems has recently become a central theme. Such functional materials can be assembled by supramolecular polymerization when aromatic π-systems are used as monomers, and the properties of the resulting supramolecular polymer strongly depend on the electronic structure of the monomers. Here, we demonstrate the construction of a supramolecular polymer consisting of an antiaromatic π-system as the monomer. An amide-functionalized NiII norcorrole derivative formed a one-dimensional supramolecular polymer through π-π stacking and hydrogen-bonding interactions, ensuring the persistency of the conducting pathway against thermal perturbation, which results in higher charge mobility along the tightly bound linear aggregates than that of the aromatic analogue composed of ZnII porphyrins.

5.
J Am Chem Soc ; 143(28): 10676-10685, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34170675

ABSTRACT

Three-dimensional aromaticity arising from the close stacking of two antiaromatic π-conjugated macrocycles has recently received considerable attention. Here, a cyclophane consisting of two antiaromatic Ni(II) norcorrole units tethered with two flexible alkyl chains was synthesized. The norcorrole cyclophane showed crystal polymorphism providing three different solid-state structures. Surprisingly, one of them adopted an aligned face-to-face stacking arrangement with negligible displacement along the slipping axis. Although the exchange repulsion between two π-clouds should be maximized in this orientation, the π-π distance is remarkably close (3.258 Å). Three-dimensional aromaticity in this conformation has been supported experimentally and theoretically as evidenced by small bond length alternations as well as the presence of a diatropic ring current. An analogous cyclophane with two aromatic Ni(II) porphyrin units was prepared for comparison. The porphyrin cyclophane exhibited a slipped-stacking conformation with a larger displacement (2.9 Å) and a larger interplanar distance (3.402 Å) without noticeable change of the aromaticity of each porphyrin unit. In solution, the norcorrole cyclophane forms a twist stacking arrangement with effective interplanar orbital overlap and exists in an equilibrium between stacked and nonstacked structures. Thermodynamic parameters of the stacking process were estimated, revealing an inherently large attractive interaction operating between two norcorrole units, which has been further supported by energy decomposition analysis.

6.
Dalton Trans ; 49(41): 14383-14387, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33047762

ABSTRACT

meso-Dimethylnorcorrole NiII complex exhibited enough stability under ambient conditions despite the distinct antiaromaticity. The small methyl substituents realized a dense and long-range π-stacking in its solid state, which resulted in the superior electron-transporting ability to previously reported NiII norcorroles.

7.
Org Lett ; 21(7): 2161-2165, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30896176

ABSTRACT

A sodium salt of a polycyclic trioxotriangulene (TOT) anion with six triethylene glycol chains exhibiting the formation of a colored ionic liquid at room temperature was synthesized. The ionic liquid is air- and water-stable, reflecting thermodynamic stabilization of a charge-delocalized TOT anion. Upon protonation of the TOT anion, the salt shows halochromic behaviors in solution and even in the neat liquid state with HCl vapor. The ionic liquid shows no morphological change with the chromism, presumably as a result of poor intermolecular interactions between π skeletons.

8.
Chempluschem ; 84(6): 680-685, 2019 06.
Article in English | MEDLINE | ID: mdl-31944024

ABSTRACT

A new diradical having two 4,8,10-trioxotriangulene (TOT) neutral radical units linked through an m-phenylene moiety was synthesized and characterized by ESR measurements. An electrochemical study showed that the diradical undergoes two one-electron reductions to generate corresponding dianion species, suggesting the electronic interaction between two TOT units through the π-conjugated spacer. A strong intramolecular interaction between the two TOT units gives rise to the spin-projected small hyperfine couplings in comparison with those of the monomer. Furthermore, the temperature dependent ESR measurement revealed that the dimer behaves as an S=1 species in the ground state with a ferromagnetic interaction of 2 J/kB =+7±3 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...