Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(7): 4917-4929, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38327813

ABSTRACT

A Cu-doped Fe2O3/g-C3N4 composite, synthesized via a straightforward hydrothermal process with controlled morphologies, represents a significant advancement in supercapacitor electrode materials. This study systematically analyzes the impact of Cu doping in Fe2O3 and its synergistic combination with g-C3N4 to understand their influence on the electrochemical performance of the resulting composite, focusing on Cu doping in Fe2O3 rather than varying Fe2O3/g-C3N4 content. The comprehensive characterization of these composites involved a suite of physicochemical techniques. X-ray diffraction (XRD) confirmed the successful synthesis of the composite, while field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were employed to investigate the morphological attributes of the synthesized materials. X-ray photoelectron spectroscopy (XPS) spectra confirmed the elemental composition of the composite with 6% Cu doped Fe2O3/g-C3N4. The composite electrode, which incorporated 6% Cu doped Fe2O3 with g-C3N4, exhibited exceptional cycling stability, retaining 94.22% of its capacity even after 2000 charge-discharge cycles at a current density of 5 mA cm-2. Furthermore, this Cu doped Fe2O3/g-C3N4 composite electrode demonstrated impressive electrochemical performance, boasting a specific capacitance of 244.0 F g-1 and an impressive maximum energy density of 5.31 W h kg-1 at a scan rate of 5 mV s-1. These findings highlight the substantial potential of the Cu doped Fe2O3/g-C3N4 electrode for supercapacitor applications.

2.
R Soc Open Sci ; 8(10): 210567, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34703617

ABSTRACT

Owing to their extraordinary properties of π-conjugated polymers (π-CPs), such as light weight, structural versatility, ease of synthesis and environmentally friendly nature, they have attracted considerable attention as electrode material for metal-ion batteries (MIBs) and supercapacitors (SCPs). Recently, researchers have focused on developing nanostructured π-CPs and their composites with metal oxides and carbon-based materials to enhance the energy density and capacitive performance of MIBs and SCPs. Also, the researchers recently demonstrated various novel strategies to combine high electrical conductivity and high redox activity of different π-CPs. To reflect this fact, the present review investigates the current advancements in the synthesis of nanostructured π-CPs and their composites. Further, this review explores the recent development in different methods for the fabrication and design of π-CPs electrodes for MIBs and SCPs. In review, finally, the future prospects and challenges of π-CPs as an electrode materials for strategies for MIBs and SCPs are also presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...