Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Immunity ; 57(2): 271-286.e13, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38301652

ABSTRACT

The immune system encodes information about the severity of a pathogenic threat in the quantity and type of memory cells it forms. This encoding emerges from lymphocyte decisions to maintain or lose self-renewal and memory potential during a challenge. By tracking CD8+ T cells at the single-cell and clonal lineage level using time-resolved transcriptomics, quantitative live imaging, and an acute infection model, we find that T cells will maintain or lose memory potential early after antigen recognition. However, following pathogen clearance, T cells may regain memory potential if initially lost. Mechanistically, this flexibility is implemented by a stochastic cis-epigenetic switch that tunably and reversibly silences the memory regulator, TCF1, in response to stimulation. Mathematical modeling shows how this flexibility allows memory T cell numbers to scale robustly with pathogen virulence and immune response magnitudes. We propose that flexibility and stochasticity in cellular decisions ensure optimal immune responses against diverse threats.


Subject(s)
CD8-Positive T-Lymphocytes , Memory T Cells , Epigenesis, Genetic , Clone Cells , Immunologic Memory , Cell Differentiation
2.
Theor Popul Biol ; 151: 44-63, 2023 06.
Article in English | MEDLINE | ID: mdl-37100121

ABSTRACT

We study a multi-stage model for the development of colorectal cancer from initially healthy tissue. The model incorporates a complex sequence of driver gene alterations, some of which result in immediate growth advantage, while others have initially neutral effects. We derive analytic estimates for the sizes of premalignant subpopulations, and use these results to compute the waiting times to premalignant and malignant genotypes. This work contributes to the quantitative understanding of colorectal tumor evolution and the lifetime risk of colorectal cancer.


Subject(s)
Colorectal Neoplasms , Waiting Lists , Humans , Colorectal Neoplasms/genetics , Genotype
3.
Nucleic Acids Res ; 48(11): 6108-6119, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32392345

ABSTRACT

Protamine proteins dramatically condense DNA in sperm to almost crystalline packing levels. Here, we measure the first step in the in vitro pathway, the folding of DNA into a single loop. Current models for DNA loop formation are one-step, all-or-nothing models with a looped state and an unlooped state. However, when we use a Tethered Particle Motion (TPM) assay to measure the dynamic, real-time looping of DNA by protamine, we observe the presence of multiple folded states that are long-lived (∼100 s) and reversible. In addition, we measure folding on DNA molecules that are too short to form loops. This suggests that protamine is using a multi-step process to loop the DNA rather than a one-step process. To visualize the DNA structures, we used an Atomic Force Microscopy (AFM) assay. We see that some folded DNA molecules are loops with a ∼10-nm radius and some of the folded molecules are partial loops-c-shapes or s-shapes-that have a radius of curvature of ∼10 nm. Further analysis of these structures suggest that protamine is bending the DNA to achieve this curvature rather than increasing the flexibility of the DNA. We therefore conclude that protamine loops DNA in multiple steps, bending it into a loop.


Subject(s)
DNA/chemistry , DNA/drug effects , Nucleic Acid Conformation/drug effects , Protamines/chemistry , Protamines/pharmacology , DNA/ultrastructure , Microscopy, Atomic Force , Pliability
SELECTION OF CITATIONS
SEARCH DETAIL
...