Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Colloid Interface Sci ; 365(1): 296-307, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21963207

ABSTRACT

Investigation of basic interactions between the active pharmaceutical compounds and calcium carbonates is of great importance because of the possibility to use the carbonates as a mineral carrier in drug delivery systems. In this study the mode and extent of interactions of salicylic acid and its amino acid derivates, chosen as pharmaceutically relevant model compounds, with calcite crystals are described. Therefore, the crystal growth kinetics of well defined rhombohedral calcite seed crystals in the systems containing salicylic acid (SA), 5-amino salicylic acid (5-ASA), N-salicyloil-l-aspartic acid (N-Sal-Asp) or N-salicyloil-l-glutamic acid (N-Sal-Glu), were investigated. The precipitation systems were of relatively low initial supersaturation and of apparently neutral pH. The data on the crystal growth rate reductions in the presence of the applied salicylate molecules were analyzed by means of Cabrera & Vermileya's, and Kubota & Mullin's models of interactions of the dissolved additives and crystal surfaces. The crystal growth kinetic experiments were additionally supported with the appropriate electrokinetic, spectroscopic and adsorption measurements. The Langmuir adsorption constants were determined and they were found to be in a good correlation with values obtained from crystal growth kinetic analyses. The results indicated that salicylate molecules preferentially adsorb along the steps on the growing calcite surfaces. The values of average spacing between the adjacent salicylate adsorption active sites and the average distance between the neighboring adsorbed salicylate molecules were also estimated.


Subject(s)
Calcium Carbonate/chemistry , Drug Carriers/chemistry , Salicylates/chemistry
3.
J Colloid Interface Sci ; 329(1): 89-96, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-18848702

ABSTRACT

The influence of sodium stearate (NaSt) on the precipitation of calcium carbonate during the semicontinuous process of slaked lime carbonation was studied in the systems in which process parameters, like concentration of total dissolved calcium, temperature, CO(2) flow rate and initial addition rate of slaked lime, were controlled. It was found that calcite was the only calcium carbonate polymorph that appeared under the investigated experimental conditions, while FT-IR spectroscopy and thermogravimetric analysis of samples confirmed the presence of stearate on the surface of precipitated calcium carbonate (PCC). Specific surface area of PCC increased with increasing stearate content: the highest value, s = 52.8 m(2) g(-1), was obtained at t = 20 degrees C, c(tot) = 17.0 mmol dm(-3) and the stearate content of m(NaSt)/m(CaO) = 0.03. It was also found that hydrophobic calcite crystals in the form of rhombohedral and scalenohedral morphology can be produced at m(NaSt)/m(CaO) > 0.01. The exception is the case of nanosized PCC production, when much higher concentration of NaSt is needed, m(NaSt)/m(CaO) = 0.22. Minimal amount of stearate necessary to build up the monolayer and corresponding cross sectional area of one stearate molecule were estimated for the obtained calcite morphologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...