Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Mech Ageing Dev ; 211: 111791, 2023 04.
Article in English | MEDLINE | ID: mdl-36796730

ABSTRACT

There is growing literature on applications of biodemographic models, including stochastic process models (SPM), to studying regularities of age dynamics of biological variables in relation to aging and disease development. Alzheimer's disease (AD) is especially good candidate for SPM applications because age is a major risk factor for this heterogeneous complex trait. However, such applications are largely lacking. This paper starts filling this gap and applies SPM to data on onset of AD and longitudinal trajectories of body mass index (BMI) constructed from the Health and Retirement Study surveys and Medicare-linked data. We found that APOE e4 carriers are less robust to deviations of trajectories of BMI from the optimal levels compared to non-carriers. We also observed age-related decline in adaptive response (resilience) related to deviations of BMI from optimal levels as well as APOE- and age-dependence in other components related to variability of BMI around the mean allostatic values and accumulation of allostatic load. SPM applications thus allow revealing novel connections between age, genetic factors and longitudinal trajectories of risk factors in the context of AD and aging creating new opportunities for understanding AD development, forecasting trends in AD incidence and prevalence in populations, and studying disparities in those.


Subject(s)
Alzheimer Disease , Aged , United States/epidemiology , Humans , Alzheimer Disease/epidemiology , Alzheimer Disease/genetics , Retirement , Medicare , Aging , Apolipoproteins E/genetics
2.
J Gerontol A Biol Sci Med Sci ; 76(7): 1303-1308, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33180942

ABSTRACT

BACKGROUND: Serum levels of insulin-like growth factor 1 (IGF-1) and body mass index (BMI) are both associated with susceptibility to age-related diseases. Reports on the correlation between them have been conflicting, with both positive to negative correlations reported. However, the age ranges of the participants varied widely among these studies. METHODS: Using data on 4241 participants (aged 24-110) from the Long Life Family Study, we investigated the relationship between IGF-1 and BMI by age groups using regression analysis. RESULTS: When stratified by age quartile, the relationship between IGF-1 and BMI varied: in the first quartile (Q1, 20-58 years) the relationship was negative (ß = -0.2, p = .002); in Q2 (58-66 years) and Q3 (67-86 years) the relationship was negative (ß = -0.07, ß = -0.01, respectively) but nonsignificant; and in Q4 (87-110 years) the relationship was positive (ß = 0.31, p = .0002). This pattern did not differ by sex. We observed a similar age-related pattern between IGF-1 and BMI among participants in the third National Health and Nutritional Examination Survey. CONCLUSIONS: Our results that the relationship between IGF-1 and BMI differs by age may explain some of the inconsistency in reports about their relationship and encourage additional studies to understand the mechanisms underlying it.


Subject(s)
Body Mass Index , Insulin-Like Growth Factor I/metabolism , Adult , Age Factors , Aged , Aged, 80 and over , Disease Susceptibility , Female , Humans , Longitudinal Studies , Male , Middle Aged
3.
Aging (Albany NY) ; 12(7): 5920-5947, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32235003

ABSTRACT

Recently, Mahalanobis distance (DM) was suggested as a statistical measure of physiological dysregulation in aging individuals. We constructed DM variants using sets of biomarkers collected at the two visits of the Long Life Family Study (LLFS) and performed joint analyses of longitudinal observations of DM and follow-up mortality in LLFS using joint models. We found that DM is significantly associated with mortality (hazard ratio per standard deviation: 1.31 [1.16, 1.48] to 2.22 [1.84, 2.67]) after controlling for age and other covariates. GWAS of random intercepts and slopes of DM estimated from joint models found a genome-wide significant SNP (rs12652543, p=7.2×10-9) in the TRIO gene associated with the slope of DM constructed from biomarkers declining in late life. Review of biological effects of genes corresponding to top SNPs from GWAS of DM slopes revealed that these genes are broadly involved in cancer prognosis and axon guidance/synapse function. Although axon growth is mainly observed during early development, the axon guidance genes can function in adults and contribute to maintenance of neural circuits and synaptic plasticity. Our results indicate that decline in axons' ability to maintain complex regulatory networks may potentially play an important role in the increase in physiological dysregulation during aging.


Subject(s)
Aging , Chronobiology Phenomena/genetics , Neoplasms , Neural Pathways/physiology , Neuronal Plasticity/genetics , Aging/genetics , Aging/physiology , Biomarkers/analysis , Female , Gene Regulatory Networks , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors/genetics , Humans , Joints/physiology , Joints/physiopathology , Longitudinal Studies , Male , Models, Biological , Mortality , Neoplasms/diagnosis , Neoplasms/genetics , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases/genetics
4.
Front Public Health ; 8: 56, 2020.
Article in English | MEDLINE | ID: mdl-32211364

ABSTRACT

Biological aging results in changes in an organism that accumulate over age in a complex fashion across different regulatory systems, and their cumulative effect manifests in increased physiological dysregulation (PD) and declining robustness and resilience that increase risks of health disorders and death. Several composite measures involving multiple biomarkers that capture complex effects of aging have been proposed. We applied one such approach, the Mahalanobis distance (DM), to baseline measurements of various biomarkers (inflammation, hematological, diabetes-associated, lipids, endocrine, renal) in 3,279 participants from the Long Life Family Study (LLFS) with complete biomarker data. We used DM to estimate the level of PD by summarizing information about multiple deviations of biomarkers from specified "norms" in the reference population (here, LLFS participants younger than 60 years at baseline). An increase in DM was associated with significantly higher mortality risk (hazard ratio per standard deviation of DM: 1.42; 95% confidence interval: [1.3, 1.54]), even after adjustment for a composite measure summarizing 85 health-related deficits (disabilities, diseases, less severe symptoms), age, and other covariates. Such composite measures significantly improved mortality predictions especially in the subsample of participants from families enriched for exceptional longevity (the areas under the receiver operating characteristic curves are 0.88 vs. 0.85, in models with and without the composite measures, p = 2.9 × 10-5). Sensitivity analyses confirmed that our conclusions are not sensitive to different aspects of computational procedures. Our findings provide the first evidence of association of PD with mortality and its predictive performance in a unique sample selected for exceptional familial longevity.


Subject(s)
Aging , Longevity , Biomarkers , Humans , Proportional Hazards Models , ROC Curve
5.
Geroscience ; 41(4): 383-393, 2019 08.
Article in English | MEDLINE | ID: mdl-31332674

ABSTRACT

Five healthy aging phenotypes were developed in the Long Life Family Study to uncover longevity pathways and determine if healthy aging across multiple systems clustered in a subset of long-lived families. Using blood pressure, memory, pulmonary function, grip strength, and metabolic measures (body mass index, waist circumference and fasting levels of glucose, insulin, triglycerides, lipids, and inflammatory markers), offspring were ranked according to relative health using gender-, age-, and relevant confounder-adjusted z-scores. Based on our prior work, families met a healthy aging phenotype if ≥ 2 and ≥ 50% of their offspring were exceptionally healthy for that respective phenotype. Among 426 families, only two families met criteria for three healthy aging phenotypes and none met criteria for four or more healthy aging phenotypes. Using Spearman correlation, the proportion of offspring within families with exceptionally healthy pulmonary function was correlated with the proportion of offspring within families with exceptional strength (r = 0.19, p = 0.002). The proportion of offspring within families meeting the healthy blood pressure and metabolic phenotypes were also correlated (r = 0.14, p = 0.006), and more families were classified as meeting healthy blood pressure and metabolic phenotypes (Kappa = 0.10, p = 0.02), as well as the healthy pulmonary and blood pressure phenotypes than expected by chance (Kappa = 0.09, p = 0.03). Other phenotypes were weakly correlated (|r| ≤ 0.07) with low pairwise agreement (Kappa ≤ 0.06). Among these families selected for familial longevity, correspondence between healthy aging phenotypes was weak, supporting the heterogeneous nature of longevity and suggesting biological underpinnings of each individual phenotype should be examined separately to determine their shared and unique determinants.


Subject(s)
Healthy Aging/physiology , Phenotype , Blood Glucose/analysis , Blood Pressure/physiology , Body Mass Index , C-Reactive Protein/analysis , Cholesterol, HDL/blood , Cohort Studies , Denmark , Family , Hand Strength/physiology , Humans , Insulin/blood , Interleukin-6/blood , Longevity/physiology , Memory/physiology , Respiratory Physiological Phenomena , Triglycerides/blood , United States , Waist Circumference/physiology
6.
J Gerontol A Biol Sci Med Sci ; 74(4): 462-468, 2019 03 14.
Article in English | MEDLINE | ID: mdl-29939206

ABSTRACT

Recently suggested novel implementation of the statistical distance measure (DM) for evaluating "physiological dysregulation" (PD) in aging individuals (based on measuring deviations of multiple biomarkers from baseline or normal physiological states) allows reducing high-dimensional biomarker space into a single PD estimate. Here we constructed DM using biomarker profiles from FRAMCOHORT (Framingham Heart Study) and CHS (Cardiovascular Health Study) Research Materials obtained from the NHLBI Biologic Specimen and Data Repository Information Coordinating Center, and estimated effect of PD on total survival, onset of unhealthy life (proxy for "robustness") and survival following the onset of unhealthy life (proxy for "resilience"). We investigated relationships between PD and declines in stress resistance and adaptive capacity not directly observed in data. PD was more strongly associated with the onset of unhealthy life than with survival after disease suggesting that declines in robustness and resilience with age may have overlapping as well as distinct mechanisms. We conclude that multiple deviations of physiological markers from their normal states (reflected in higher PD) may contribute to increased vulnerability to many diseases and precede their clinical manifestation. This supports potential use of PD in health care as a preclinical indicator of transition from healthy to unhealthy state.


Subject(s)
Adaptation, Physiological/physiology , Aging/physiology , Health Status , Adult , Aged , Aged, 80 and over , Biomarkers , Female , Humans , Longitudinal Studies , Male , Middle Aged , Proportional Hazards Models , United States
7.
Front Public Health ; 6: 277, 2018.
Article in English | MEDLINE | ID: mdl-30327761

ABSTRACT

The Family Longevity Selection Score (FLoSS) was used to select families for the Long Life Family Study (LLFS) but has never been validated in other populations. The goal of this paper is to validate how well the FLoSS-based selection procedure works in an independent dataset. In this paper, we computed FLoSS using the lifespan data of 234,155 individuals from a large comprehensive genealogically-based resource, the Utah Population Database (UPDB), born between 1779 and 1910 with mortality follow-up through 2012-2013. Computations of FLoSS in a specific year (1980) confirmed the survival advantage of the "exceptional" sibships (defined by LLFS FLoSS threshold, FLoSS ≥ 7). We found that the subsample of the UPDB participants born after 1900 who were from the "exceptional" sibships had survival curves similar to that of the US participants from the LLFS probands' generation. Comparisons between the offspring of parents with "exceptional" and "ordinary" survival showed the survival advantage of the "exceptional" offspring. Investigators seeking to explain the extent genetics and environment contribute to exceptional survival will benefit from the use of exceptionally long-lived individuals and their relatives. Appropriate ranking of families by survival exceptionality and their availability for the purposes of providing genetic and phenotypic data is critical for selecting participants into such studies. This study validated the FLoSS as selection criteria in family longevity studies using UPDB.

8.
J Gerontol A Biol Sci Med Sci ; 73(11): 1472-1481, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30299504

ABSTRACT

The special design of the Long Life Family Study provides a unique opportunity to investigate the genetics of human longevity by analyzing data on exceptional lifespans in families. In this article, we performed two series of genome wide association studies of human longevity which differed with respect to whether missing lifespan data were predicted or not predicted. We showed that the use of predicted lifespan is most beneficial when the follow-up period is relatively short. In addition to detection of strong associations of SNPs in APOE, TOMM40, NECTIN2, and APOC1 genes with longevity, we also detected a strong new association with longevity of rs1927465, located between the CYP26A1 and MYOF genes on chromosome 10. The association was confirmed using data from the Health and Retirement Study. We discuss the biological relevance of the detected SNPs to human longevity.


Subject(s)
Longevity/genetics , Pedigree , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Apolipoprotein C-I/genetics , Apolipoproteins E/genetics , Calcium-Binding Proteins/genetics , Chromosomes, Human, Pair 10 , Chromosomes, Human, Pair 19 , Denmark , Female , Gene Frequency , Genome-Wide Association Study , Humans , Logistic Models , Longitudinal Studies , Male , Membrane Proteins/genetics , Membrane Transport Proteins , Mitochondrial Precursor Protein Import Complex Proteins , Muscle Proteins/genetics , Nectins , Retinoic Acid 4-Hydroxylase/genetics , United States
10.
Aging Cell ; 16(1): 61-72, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27683205

ABSTRACT

Traditionally, genomewide association studies (GWAS) have emphasized the benefits of large samples in the analyses of age-related traits rather than their specific properties. We adopted a realistic concept of genetic susceptibility to inherently heterogeneous, age-related traits driven by the elusive role of evolution in their properties. We analyzed in detail the associations of rs693 and rs562338 polymorphisms representing the Apolipoprotein B locus with endophenotypes (total cholesterol [TC] and high-density lipoprotein cholesterol) and phenotypes (myocardial infarction [MI] and survival) in four large-scale studies, which include 20 748 individuals with 2357 MI events. We showed that a strong, robust predisposition of rs693 and rs562338 to TC (ß = 0.72, P = 7.7 × 10-30 for rs693 and ß = -1.08, P = 9.8 × 10-42 for rs562338) is not translated into a predisposition to MI and survival. The rs693_A allele influences risks of MI and mortality after MI additively with lipids. This allele shows antagonistic effects-protecting against MI risks (ß = -0.18, P = 1.1 × 10-5 ) or increasing MI risks (ß = 0.15, P = 2.8 × 10-3 ) and mortality after MI, in different populations. Paradoxically, increased TC concentrations can be protective against MI for the rs693_A allele carriers. Our results uncouple the influences of the same alleles on endophenotypes and phenotypes despite potential causal relationships among the latter. Our strategy reveals virtually genomewide significance for the associations of rs693 with MI (P = 5.5 × 10-8 ) that is contrasted with a weak estimate following the traditional, sample-size-centered GWAS strategy (P = 0.16) in the same sample. These results caution against the use of the traditional GWAS strategy for gaining profound insights into genetic predisposition to healthspan and lifespan.


Subject(s)
Alleles , Apolipoproteins B/genetics , Endophenotypes/metabolism , Genetic Association Studies , Genetic Loci , Genetic Predisposition to Disease , Heart/physiopathology , Myocardial Infarction/genetics , Adolescent , Adult , Aged, 80 and over , Child , Child, Preschool , Humans , Middle Aged , Myocardial Infarction/mortality , Polymorphism, Single Nucleotide/genetics , Risk Factors , Young Adult
11.
PLoS Genet ; 12(11): e1006314, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27832070

ABSTRACT

Gaining insights into genetic predisposition to age-related diseases and lifespan is a challenging task complicated by the elusive role of evolution in these phenotypes. To gain more insights, we combined methods of genome-wide and candidate-gene studies. Genome-wide scan in the Atherosclerosis Risk in Communities (ARIC) Study (N = 9,573) was used to pre-select promising loci. Candidate-gene methods were used to comprehensively analyze associations of novel uncommon variants in Caucasians (minor allele frequency~2.5%) located in band 2q22.3 with risks of coronary heart disease (CHD), heart failure (HF), stroke, diabetes, cancer, neurodegenerative diseases (ND), and mortality in the ARIC study, the Framingham Heart Study (N = 4,434), and the Health and Retirement Study (N = 9,676). We leveraged the analyses of pleiotropy, age-related heterogeneity, and causal inferences. Meta-analysis of the results from these comprehensive analyses shows that the minor allele increases risks of death by about 50% (p = 4.6×10-9), CHD by 35% (p = 8.9×10-6), HF by 55% (p = 9.7×10-5), stroke by 25% (p = 4.0×10-2), and ND by 100% (p = 1.3×10-3). This allele also significantly influences each of two diseases, diabetes and cancer, in antagonistic fashion in different populations. Combined significance of the pleiotropic effects was p = 6.6×10-21. Causal mediation analyses show that endophenotypes explained only small fractions of these effects. This locus harbors an evolutionary conserved gene-desert region with non-coding intergenic sequences likely involved in regulation of protein-coding flanking genes ZEB2 and ACVR2A. This region is intensively studied for mutations causing severe developmental/genetic disorders. Our analyses indicate a promising target region for interventions aimed to reduce risks of many major human diseases and mortality.


Subject(s)
Activin Receptors, Type II/genetics , Genetic Diseases, Inborn/genetics , Genome-Wide Association Study , Homeodomain Proteins/genetics , Repressor Proteins/genetics , Atherosclerosis/genetics , Atherosclerosis/mortality , Chromosomes, Human, Pair 2/genetics , Coronary Disease/genetics , Coronary Disease/mortality , Diabetes Mellitus/genetics , Diabetes Mellitus/mortality , Female , Genetic Association Studies , Genetic Diseases, Inborn/mortality , Genetic Pleiotropy , Genetic Predisposition to Disease , Heart Failure/genetics , Heart Failure/mortality , Humans , Male , Risk Factors , Stroke/genetics , Stroke/mortality , Zinc Finger E-box Binding Homeobox 2
12.
Front Genet ; 7: 179, 2016.
Article in English | MEDLINE | ID: mdl-27790247

ABSTRACT

Age-related diseases may result from shared biological mechanisms in intrinsic processes of aging. Genetic effects on age-related diseases are often modulated by environmental factors due to their little contribution to fitness or are mediated through certain endophenotypes. Identification of genetic variants with pleiotropic effects on both common complex diseases and endophenotypes may reveal potential conflicting evolutionary pressures and deliver new insights into shared genetic contribution to healthspan and lifespan. Here, we performed pleiotropic meta-analyses of genetic variants using five NIH-funded datasets by integrating univariate summary statistics for age-related diseases and endophenotypes. We investigated three groups of traits: (1) endophenotypes such as blood glucose, blood pressure, lipids, hematocrit, and body mass index, (2) time-to-event outcomes such as the age-at-onset of diabetes mellitus (DM), cancer, cardiovascular diseases (CVDs) and neurodegenerative diseases (NDs), and (3) both combined. In addition to replicating previous findings, we identify seven novel genome-wide significant loci (< 5e-08), out of which five are low-frequency variants. Specifically, from Group 2, we find rs7632505 on 3q21.1 in SEMA5B, rs460976 on 21q22.3 (1 kb from TMPRSS2) and rs12420422 on 11q24.1 predominantly associated with a variety of CVDs, rs4905014 in ITPK1 associated with stroke and heart failure, rs7081476 on 10p12.1 in ANKRD26 associated with multiple diseases including DM, CVDs, and NDs. From Group 3, we find rs8082812 on 18p11.22 and rs1869717 on 4q31.3 associated with both endophenotypes and CVDs. Our follow-up analyses show that rs7632505, rs4905014, and rs8082812 have age-dependent effects on coronary heart disease or stroke. Functional annotation suggests that most of these SNPs are within regulatory regions or DNase clusters and in linkage disequilibrium with expression quantitative trait loci, implying their potential regulatory influence on the expression of nearby genes. Our mediation analyses suggest that the effects of some SNPs are mediated by specific endophenotypes. In conclusion, these findings indicate that loci with pleiotropic effects on age-related disorders tend to be enriched in genes involved in underlying mechanisms potentially related to nervous, cardiovascular and immune system functions, stress resistance, inflammation, ion channels and hematopoiesis, supporting the hypothesis of shared pathological role of infection, and inflammation in chronic age-related diseases.

13.
N Am Actuar J ; 20(3): 201-232, 2016.
Article in English | MEDLINE | ID: mdl-27773987

ABSTRACT

BACKGROUND AND OBJECTIVE: To clarify mechanisms of genetic regulation of human aging and longevity traits, a number of genome-wide association studies (GWAS) of these traits have been performed. However, the results of these analyses did not meet expectations of the researchers. Most detected genetic associations have not reached a genome-wide level of statistical significance, and suffered from the lack of replication in the studies of independent populations. The reasons for slow progress in this research area include low efficiency of statistical methods used in data analyses, genetic heterogeneity of aging and longevity related traits, possibility of pleiotropic (e.g., age dependent) effects of genetic variants on such traits, underestimation of the effects of (i) mortality selection in genetically heterogeneous cohorts, (ii) external factors and differences in genetic backgrounds of individuals in the populations under study, the weakness of conceptual biological framework that does not fully account for above mentioned factors. One more limitation of conducted studies is that they did not fully realize the potential of longitudinal data that allow for evaluating how genetic influences on life span are mediated by physiological variables and other biomarkers during the life course. The objective of this paper is to address these issues. DATA AND METHODS: We performed GWAS of human life span using different subsets of data from the original Framingham Heart Study cohort corresponding to different quality control (QC) procedures and used one subset of selected genetic variants for further analyses. We used simulation study to show that approach to combining data improves the quality of GWAS. We used FHS longitudinal data to compare average age trajectories of physiological variables in carriers and non-carriers of selected genetic variants. We used stochastic process model of human mortality and aging to investigate genetic influence on hidden biomarkers of aging and on dynamic interaction between aging and longevity. We investigated properties of genes related to selected variants and their roles in signaling and metabolic pathways. RESULTS: We showed that the use of different QC procedures results in different sets of genetic variants associated with life span. We selected 24 genetic variants negatively associated with life span. We showed that the joint analyses of genetic data at the time of bio-specimen collection and follow up data substantially improved significance of associations of selected 24 SNPs with life span. We also showed that aging related changes in physiological variables and in hidden biomarkers of aging differ for the groups of carriers and non-carriers of selected variants. CONCLUSIONS: . The results of these analyses demonstrated benefits of using biodemographic models and methods in genetic association studies of these traits. Our findings showed that the absence of a large number of genetic variants with deleterious effects may make substantial contribution to exceptional longevity. These effects are dynamically mediated by a number of physiological variables and hidden biomarkers of aging. The results of these research demonstrated benefits of using integrative statistical models of mortality risks in genetic studies of human aging and longevity.

14.
Sci Rep ; 6: 35390, 2016 10 14.
Article in English | MEDLINE | ID: mdl-27739495

ABSTRACT

Common strategy of genome-wide association studies (GWAS) relying on large samples faces difficulties, which raise concerns that GWAS have exhausted their potential, particularly for complex traits. Here, we examine the efficiency of the traditional sample-size-centered strategy in GWAS of these traits, and its potential for improvement. The paper focuses on the results of the four largest GWAS meta-analyses of body mass index (BMI) and lipids. We show that just increasing sample size may not make p-values of genetic effects in large (N > 100,000) samples smaller but can make them larger. The efficiency of these GWAS, defined as ratio of the log-transformed p-value to the sample size, in larger samples was larger than in smaller samples for a small fraction of loci. These results emphasize the important role of heterogeneity in genetic associations with complex traits such as BMI and lipids. They highlight the substantial potential for improving GWAS by explicating this role (affecting 11-79% of loci in the selected GWAS), especially the effects of biodemographic processes, which are heavily underexplored in current GWAS and which are important sources of heterogeneity in the various study populations. Further progress in this direction is crucial for efficient use of genetic discoveries in health care.


Subject(s)
Body Mass Index , Genetic Predisposition to Disease , Genome-Wide Association Study/statistics & numerical data , Humans , Lipids/genetics , Phenotype , Polymorphism, Single Nucleotide , Sample Size
15.
Biogerontology ; 17(5-6): 893-905, 2016 11.
Article in English | MEDLINE | ID: mdl-27447179

ABSTRACT

The apolipoprotein E (apoE) is a classic example of a gene exhibiting pleiotropism. We examine potential pleiotropic associations of the apoE2 allele in three biodemographic cohorts of long-living individuals, offspring, and spouses from the Long Life Family Study, and intermediate mechanisms, which can link this allele with age-related phenotypes. We focused on age-related macular degeneration, bronchitis, asthma, pneumonia, stroke, creatinine, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, diseases of heart (HD), cancer, and survival. Our analysis detected favorable associations of the ε2 allele with lower LDL-C levels, lower risks of HD, and better survival. The ε2 allele was associated with LDL-C in each gender and biodemographic cohort, including long-living individuals, offspring, and spouses, resulting in highly significant association in the entire sample (ß = -7.1, p = 6.6 × 10-44). This allele was significantly associated with HD in long-living individuals and offspring (relative risk [RR] = 0.60, p = 3.1 × 10-6) but this association was not mediated by LDL-C. The protective effect on survival was specific for long-living women but it was not explained by LDL-C and HD in the adjusted model (RR = 0.70, p = 2.1 × 10-2). These results show that ε2 allele may favorably influence LDL-C, HD, and survival through three mechanisms. Two of them (HD- and survival-related) are pronounced in the long-living parents and their offspring; the survival-related mechanism is also sensitive to gender. The LDL-C-related mechanism appears to be independent of these factors. Insights into mechanisms linking ε2 allele with age-related phenotypes given biodemographic structure of the population studied may benefit translation of genetic discoveries to health care and personalized medicine.


Subject(s)
Aging/genetics , Alleles , Apolipoprotein E2/genetics , Critical Illness/mortality , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Longevity/genetics , Age Distribution , Chronic Disease/mortality , Evidence-Based Medicine , Female , Genetic Markers , Humans , Internationality , Male , Middle Aged , Prevalence , Quantitative Trait Loci/genetics , Risk Factors , Sex Distribution , Survival Rate
16.
Mech Ageing Dev ; 156: 42-54, 2016 06.
Article in English | MEDLINE | ID: mdl-27138087

ABSTRACT

Contemporary longitudinal studies collect repeated measurements of biomarkers allowing one to analyze their dynamics in relation to mortality, morbidity, or other health-related outcomes. Rich and diverse data collected in such studies provide opportunities to investigate how various socio-economic, demographic, behavioral and other variables can interact with biological and genetic factors to produce differential rates of aging in individuals. In this paper, we review some recent publications investigating dynamics of biomarkers in relation to mortality, which use single biomarkers as well as cumulative measures combining information from multiple biomarkers. We also discuss the analytical approach, the stochastic process models, which conceptualizes several aging-related mechanisms in the structure of the model and allows evaluating "hidden" characteristics of aging-related changes indirectly from available longitudinal data on biomarkers and follow-up on mortality or onset of diseases taking into account other relevant factors (both genetic and non-genetic). We also discuss an extension of the approach, which considers ranges of "optimal values" of biomarkers rather than a single optimal value as in the original model. We discuss practical applications of the approach to single biomarkers and cumulative measures highlighting that the potential of applications to cumulative measures is still largely underused.


Subject(s)
Aging/metabolism , Biomarkers/metabolism , Models, Biological , Mortality , Animals , Humans
17.
Front Public Health ; 4: 3, 2016.
Article in English | MEDLINE | ID: mdl-26835445

ABSTRACT

While longitudinal changes in biomarker levels and their impact on health have been characterized for individual markers, little is known about how overall marker profiles may change during aging and affect mortality risk. We implemented the recently developed measure of physiological dysregulation based on the statistical distance of biomarker profiles in the framework of the stochastic process model of aging, using data on blood pressure, heart rate, cholesterol, glucose, hematocrit, body mass index, and mortality in the Framingham original cohort. This allowed us to evaluate how physiological dysregulation is related to different aging-related characteristics such as decline in stress resistance and adaptive capacity (which typically are not observed in the data and thus can be analyzed only indirectly), and, ultimately, to estimate how such dynamic relationships increase mortality risk with age. We found that physiological dysregulation increases with age; that increased dysregulation is associated with increased mortality, and increasingly so with age; and that, in most but not all cases, there is a decreasing ability to return quickly to baseline physiological state with age. We also revealed substantial sex differences in these processes, with women becoming dysregulated more quickly but with men showing a much greater sensitivity to dysregulation in terms of mortality risk.

18.
Biogerontology ; 17(1): 89-107, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26280653

ABSTRACT

Increasing proportions of elderly individuals in developed countries combined with substantial increases in related medical expenditures make the improvement of the health of the elderly a high priority today. If the process of aging by individuals is a major cause of age related health declines then postponing aging could be an efficient strategy for improving the health of the elderly. Implementing this strategy requires a better understanding of genetic and non-genetic connections among aging, health, and longevity. We review progress and problems in research areas whose development may contribute to analyses of such connections. These include genetic studies of human aging and longevity, the heterogeneity of populations with respect to their susceptibility to disease and death, forces that shape age patterns of human mortality, secular trends in mortality decline, and integrative mortality modeling using longitudinal data. The dynamic involvement of genetic factors in (i) morbidity/mortality risks, (ii) responses to stresses of life, (iii) multi-morbidities of many elderly individuals, (iv) trade-offs for diseases, (v) genetic heterogeneity, and (vi) other relevant aging-related health declines, underscores the need for a comprehensive, integrated approach to analyze the genetic connections for all of the above aspects of aging-related changes. The dynamic relationships among aging, health, and longevity traits would be better understood if one linked several research fields within one conceptual framework that allowed for efficient analyses of available longitudinal data using the wealth of available knowledge about aging, health, and longevity already accumulated in the research field.


Subject(s)
Aging/genetics , Disease Susceptibility/mortality , Genetic Predisposition to Disease/genetics , Longevity/genetics , Stress, Psychological/genetics , Stress, Psychological/mortality , Age Distribution , Female , Genetic Markers/genetics , Genetic Predisposition to Disease/epidemiology , Health Status , Humans , Incidence , Male , Models, Genetic , Mortality , Risk Factors , Survival Rate
19.
PLoS One ; 10(8): e0136319, 2015.
Article in English | MEDLINE | ID: mdl-26295473

ABSTRACT

Insights into genetic origin of diseases and related traits could substantially impact strategies for improving human health. The results of genome-wide association studies (GWAS) are often positioned as discoveries of unconditional risk alleles of complex health traits. We re-analyzed the associations of single nucleotide polymorphisms (SNPs) associated with total cholesterol (TC) in a large-scale GWAS meta-analysis. We focused on three generations of genotyped participants of the Framingham Heart Study (FHS). We show that the effects of all ten directly-genotyped SNPs were clustered in different FHS generations and/or birth cohorts in a sex-specific or sex-unspecific manner. The sample size and procedure-therapeutic issues play, at most, a minor role in this clustering. An important result was clustering of significant associations with the strongest effects in the youngest, or 3rd Generation, cohort. These results imply that an assumption of unconditional connections of these SNPs with TC is generally implausible and that a demographic perspective can substantially improve GWAS efficiency. The analyses of genetic effects in age-matched samples suggest a role of environmental and age-related mechanisms in the associations of different SNPs with TC. Analysis of the literature supports systemic roles for genes for these SNPs beyond those related to lipid metabolism. Our analyses reveal strong antagonistic effects of rs2479409 (the PCSK9 gene) that cautions strategies aimed at targeting this gene in the next generation of lipid drugs. Our results suggest that standard GWAS strategies need to be advanced in order to appropriately address the problem of genetic susceptibility to complex traits that is imperative for translation to health care.


Subject(s)
Alleles , Cholesterol/blood , Genome-Wide Association Study/statistics & numerical data , Adult , Age Factors , Female , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Humans , Male , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Sex Factors
20.
Front Genet ; 6: 122, 2015.
Article in English | MEDLINE | ID: mdl-25918517

ABSTRACT

BACKGROUND: The roles of genetic factors in human longevity would be better understood if one can use more efficient methods in genetic analyses and investigate pleiotropic effects of genetic variants on aging and health related traits. DATA AND METHODS: We used EMMAX software with modified correction for population stratification to perform genome wide association studies (GWAS) of female lifespan from the original FHS cohort. The male data from the original FHS cohort and male and female data combined from the offspring FHS cohort were used to confirm findings. We evaluated pleiotropic effects of selected genetic variants as well as gene-smoking interactions on health and aging related traits. Then we reviewed current knowledge on functional properties of genes related to detected variants. RESULTS: The eight SNPs with genome-wide significant variants were negatively associated with lifespan in both males and females. After additional QC, two of these variants were selected for further analyses of their associations with major diseases (cancer and CHD) and physiological aging changes. Gene-smoking interactions contributed to these effects. Genes closest to detected variants appear to be involved in similar biological processes and health disorders, as those found in other studies of aging and longevity e.g., in cancer and neurodegeneration. CONCLUSIONS: The impact of genes on longevity may involve trade-off-like effects on different health traits. Genes that influence lifespan represent various molecular functions but may be involved in similar biological processes and health disorders, which could contribute to genetic heterogeneity of longevity and the lack of replication in genetic association studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...