Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 350: 141117, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184079

ABSTRACT

Among numerous disinfection by-products (DBP) forming during aqueous chlorination nitrogen containing species are of special concern due to their toxicological properties. Nevertheless, corresponding reaction products of these natural and anthropogenic compounds are not sufficiently studied so far. An interesting reaction involves dealkylation of the substituted amine moiety. Here we present the results of the comparative study of one-electron oxidation and aqueous chlorination of several aliphatic and aromatic amines. The reaction products were reliably identified with gas chromatography - high resolution mass spectrometry (GC-HRMS), high pressure liquid chromatography - electrospray ionization high resolution mass spectrometry HPLC-ESI/HRMS), and electrochemistry - electrospray ionization high resolution mass spectrometry (EC-ESI/HRMS). Certain similarities dealing with the formation of the corresponding aldehydes and substitution of alkyl groups at the nitrogen atom for hydrogen were shown for the studied processes. The mechanism of the substituted amines' aqueous chlorination involving one-electron oxidation is proposed and confirmed by the array of the observed reaction products. Alternative reactions taking place in conditions of aqueous chlorination, i.e. aromatic electrophilic substitution, may successfully compete with dealkylation and produce major products.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Water , Amines , Halogenation , Dealkylation , Nitrogen/analysis , Water Purification/methods , Water Pollutants, Chemical/analysis , Chlorine/chemistry , Disinfectants/chemistry
2.
Environ Pollut ; 265(Pt B): 114885, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32497945

ABSTRACT

Anthropogenic pollution of the Arctic atmosphere is of great interest due to the vulnerability of the Arctic ecosystems, as well as the processes of global transport and accumulation of atmospheric aerosols at high latitudes under conditions of cold climate. The present work throws light upon chemical composition of Arctic snow as a natural deposition matrix for atmospheric semi-volatile pollutants taken from the northernmost Arctic archipelago - Franz Josef Land, which is least affected by local sources of pollution and being a unique unstudied environmental object. The used methodology involved the liquid-liquid extraction of snow samples with dichloromethane and combination of targeted and non-targeted analyses of semi-volatile organic compounds with comprehensive two-dimensional gas chromatography - high-resolution mass spectrometry. While almost none of the known priority pollutants (except three dialkylphthalates) were identified in the studied samples, non-targeted screening revealed a specific class of biomass burning biomarkers - fatty amides with oleamide being the major component among them. Some peculiar organic pollutants (N,N-dimethylcyclohexylamine and N,N-dimethylbenzylamine) were identified in few samples. First results on the semi volatile pollutants in Franz Joseph Land snow were obtained using the most reliable GC × GC-HRMS non-target analysis.


Subject(s)
Air Pollutants/analysis , Snow , Arctic Regions , Atmosphere , Ecosystem , Environmental Monitoring
3.
Chemosphere ; 174: 66-75, 2017 May.
Article in English | MEDLINE | ID: mdl-28160679

ABSTRACT

1,1-Dimethylhydrazine is used as a fuel for carrier rockets in the majority of countries implementing space exploration programs. Being highly reactive, 1,1-dimethylhydrazine easily undergoes oxidative transformation with the formation of a number of toxic, mutagenic, and teratogenic compounds. The use of high-resolution mass spectrometry for the study of the reaction of 1,1-dimethylhydrazine oxidation with hydrogen peroxide in aqueous solution allowed us to find hundreds of nitrogen-containing products of the CHN and CHNO classes, formed via radical processes. The vast majority of the compounds have not been previously considered as possible products of the transformation of rocket fuel. We have shown that the oxidation of 1,1-dimethylhydrazine proceeds in two stages, with the formation of a great number of complex unstable intermediates that contain up to ten nitrogen atoms. These intermediates are subsequently converted into final reaction products with a concomitant decrease in the average molecular weight. The intermediates and final products of the oxidative transformation of 1,1-dimethylhydrazine were characterised on the basis of their elemental composition using van Krevelen diagrams and possible compounds corresponding to the most intense peaks in the mass spectra were proposed. The data obtained are indicative of the presence of the following classes of heterocyclic nitrogen-containing compounds among the oxidation products: imines, piperidines, pyrrolidines, dihydropyrazoles, dihydroimidazoles, triazoles, aminotriazines, and tetrazines. The results obtained open up possibilities for the targeted search and identification of new toxic products of the degradation of rocket fuel and, as a result, a more adequate assessment of the ecological consequences of space-rocket activity.


Subject(s)
Dimethylhydrazines/analysis , Dimethylhydrazines/chemistry , Hydrogen Peroxide/chemistry , Mass Spectrometry/methods , Oxidants/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...