Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 158: 108707, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38653107

ABSTRACT

Microbial electrolysis cells (MEC) have been identified as an energy efficient system for ammonium recovery from wastewater. However, high ammonium concentrations at the anode can have inhibitory effects. This work aims to determine the effects on current generation performance and active ammonia nitrogen recovery in wastewater containing 0.5 to 2.5 g N-NH4+/L. The study also evaluates the effect of two cathode materials, stainless steel (SS-MEC) and nickel foam (NF-MEC). When the concentration of ammonium in the feed was increased from 0.5 to 1.5 g N-NH4+/L the maximum current density increased from 3.2 to 3.9 A/m2, but a further increase to 2.5 g N-NH4+/L inhibited the biofilm activity, decreasing the current density to 0.5 A/m2. The maximum ammonium removal and recovery efficiencies were 71 % and 33 % at 0.5 g N-NH4+/L. The SS-MEC exhibited more energy efficient ammonium recovery compared to the NF-MEC, requiring 3.6 kWh/kgN,recovered at 0.5 gN-NH4+/L. The highest ammonium recovery rate of 33 gN/m2/d (1.5 gN-NH4+/L) was obtained with an energy consumption of 4.5 kWh/kgN,recovered. Conversely, a lower recovery rate (10 gN/m2/d for 2.5 gN-NH4+/L) resulted in reduced energy consumption at 2.1 kWh/kgN,recovered. This highlights the inherent trade-off between energy consumption and efficient ammonium recovery in the process.


Subject(s)
Ammonium Compounds , Bioelectric Energy Sources , Electrolysis , Nitrogen , Wastewater , Wastewater/chemistry , Nitrogen/chemistry , Bioelectric Energy Sources/microbiology , Ammonium Compounds/chemistry , Electrodes , Biofilms , Water Purification/methods , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...