Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Type of study
Language
Publication year range
1.
Mol Biotechnol ; 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37934390

ABSTRACT

Proteus penneri (P. penneri) is a bacillus-shaped, gram-negative, facultative anaerobe bacterium that is primarily an invasive pathogen and the etiological agent of several hospital-associated infections. P. penneri strains are naturally resistant to macrolides, amoxicillin, oxacillin, penicillin G, and cephalosporins; in addition, no vaccines are available against these strains. This warrants efforts to propose a theoretical based multi-epitope vaccine construct to prevent pathogen infections. In this research, reverse vaccinology bioinformatics and immunoinformatics approaches were adopted for vaccine target identification and construction of a multi-epitope vaccine. In the first phase, a core proteome dataset of the targeted pathogen was obtained using the NCBI database and subjected to bacterial pan-genome analysis using bacterial pan-genome analysis (BPGA) to predict core protein sequences which were then used to find good vaccine target candidates. This identified two proteins, Hcp family type VI secretion system effector and superoxide dismutase family protein, as promising vaccine targets. Afterward using the IEDB database, different B-cell and T-cell epitopes were predicted. A set of four epitopes "KGSVNVQDRE, NTGKLTGTR, IIHSDSWNER, and KDGKPVPALK" were chosen for the development of a multi-epitope vaccine construct. A 183 amino acid long vaccine design was built along with "EAAAK" and "GPGPG" linkers and a cholera toxin B-subunit adjuvant. The designed vaccine model comprised immunodominant, non-toxic, non-allergenic, and physicochemical stable epitopes. The model vaccine was docked with MHC-I, MHC-II, and TLR-4 immune cell receptors using the Cluspro2.0 web server. The binding energy score of the vaccine was - 654.7 kcal/mol for MHC-I, - 738.4 kcal/mol for MHC-II, and - 695.0 kcal/mol for TLR-4. A molecular dynamic simulation was done using AMBER v20 package for dynamic behavior in nanoseconds. Additionally, MM-PBSA binding free energy analysis was done to test intermolecular binding interactions between docked molecules. The MM-GBSA net binding energy score was - 148.00 kcal/mol, - 118.00 kcal/mol, and - 127.00 kcal/mol for vaccine with TLR-4, MHC-I, and MHC-II, respectively. Overall, these in silico-based predictions indicated that the vaccine is highly promising in terms of developing protective immunity against P. penneri. However, additional experimental validation is required to unveil the real immune response to the designed vaccine.

2.
Front Cell Infect Microbiol ; 12: 978643, 2022.
Article in English | MEDLINE | ID: mdl-36683701

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has prompted a lot of questions globally regarding the range of information about the virus's possible routes of transmission, diagnostics, and therapeutic tools. Worldwide studies have pointed out the importance of monitoring and early surveillance techniques based on the identification of viral RNA in wastewater. These studies indicated the presence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in human feces, which is shed via excreta including mucus, feces, saliva, and sputum. Subsequently, they get dumped into wastewater, and their presence in wastewater provides a possibility of using it as a tool to help prevent and eradicate the virus. Its monitoring is still done in many regions worldwide and serves as an early "warning signal"; however, a lot of limitations of wastewater surveillance have also been identified.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring , RNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...