Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (74)2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23628944

ABSTRACT

Lab-on-a-chip (LOC) applications in environmental, biomedical, agricultural, biological, and spaceflight research require an ion-selective electrode (ISE) that can withstand prolonged storage in complex biological media (1-4). An all-solid-state ion-selective-electrode (ASSISE) is especially attractive for the aforementioned applications. The electrode should have the following favorable characteristics: easy construction, low maintenance, and (potential for) miniaturization, allowing for batch processing. A microfabricated ASSISE intended for quantifying H(+), Ca(2+), and CO3(2-) ions was constructed. It consists of a noble-metal electrode layer (i.e. Pt), a transduction layer, and an ion-selective membrane (ISM) layer. The transduction layer functions to transduce the concentration-dependent chemical potential of the ion-selective membrane into a measurable electrical signal. The lifetime of an ASSISE is found to depend on maintaining the potential at the conductive layer/membrane interface (5-7). To extend the ASSISE working lifetime and thereby maintain stable potentials at the interfacial layers, we utilized the conductive polymer (CP) poly(3,4-ethylenedioxythiophene) (PEDOT) (7-9) in place of silver/silver chloride (Ag/AgCl) as the transducer layer. We constructed the ASSISE in a lab-on-a-chip format, which we called the multi-analyte biochip (MAB) (Figure 1). Calibrations in test solutions demonstrated that the MAB can monitor pH (operational range pH 4-9), CO3(2-) (measured range 0.01 mM - 1 mM), and Ca(2+) (log-linear range 0.01 mM to 1 mM). The MAB for pH provides a near-Nernstian slope response after almost one month storage in algal medium. The carbonate biochips show a potentiometric profile similar to that of a conventional ion-selective electrode. Physiological measurements were employed to monitor biological activity of the model system, the microalga Chlorella vulgaris. The MAB conveys an advantage in size, versatility, and multiplexed analyte sensing capability, making it applicable to many confined monitoring situations, on Earth or in space. Biochip Design and Experimental Methods The biochip is 10 x 11 mm in dimension and has 9 ASSISEs designated as working electrodes (WEs) and 5 Ag/AgCl reference electrodes (REs). Each working electrode (WE) is 240 µm in diameter and is equally spaced at 1.4 mm from the REs, which are 480 µm in diameter. These electrodes are connected to electrical contact pads with a dimension of 0.5 mm x 0.5 mm. The schematic is shown in Figure 2. Cyclic voltammetry (CV) and galvanostatic deposition methods are used to electropolymerize the PEDOT films using a Bioanalytical Systems Inc. (BASI) C3 cell stand (Figure 3). The counter-ion for the PEDOT film is tailored to suit the analyte ion of interest. A PEDOT with poly(styrenesulfonate) counter ion (PEDOT/PSS) is utilized for H(+) and CO3(2-), while one with sulphate (added to the solution as CaSO4) is utilized for Ca(2+). The electrochemical properties of the PEDOT-coated WE is analyzed using CVs in redox-active solution (i.e. 2 mM potassium ferricyanide (K3Fe(CN)6)). Based on the CV profile, Randles-Sevcik analysis was used to determine the effective surface area (10). Spin-coating at 1,500 rpm is used to cast ~2 µm thick ion-selective membranes (ISMs) on the MAB working electrodes (WEs). The MAB is contained in a microfluidic flow-cell chamber filled with a 150 µl volume of algal medium; the contact pads are electrically connected to the BASI system (Figure 4). The photosynthetic activity of Chlorella vulgaris is monitored in ambient light and dark conditions.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Electrodes , Lab-On-A-Chip Devices , Polymers/chemistry , Chlorella vulgaris/physiology , Silver/chemistry , Silver Compounds/chemistry
2.
Am J Bot ; 100(1): 161-74, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23048014

ABSTRACT

PREMISE OF THE STUDY: Gravity regulates the magnitude and direction of a trans-cell calcium current in germinating spores of Ceratopteris richardii. Blocking this current with nifedipine blocks the spore's downward polarity alignment, a polarization that is fixed by gravity ∼10 h after light induces the spores to germinate. RNA-seq analysis at 10 h was used to identify genes potentially important for the gravity response. The data set will be valuable for other developmental and phylogenetic studies. METHODS: De novo Newbler assembly of 958 527 reads from Roche 454 sequencing was executed. The sequences were identified and analyzed using in silico methods. The roles of endomembrane Ca(2+)-ATPase pumps and apyrases in the gravity response were further tested using pharmacological agents. KEY RESULTS: Transcripts related to calcium signaling and ethylene biosynthesis were identified as notable constituents of the transcriptome. Inhibiting the activity of endomembrane Ca(2+)-ATPase pumps with 2,5-di-(t-butyl)-1,4-hydroquinone diminished the trans-cell current, but increased the orientation of the polar axis to gravity. The effects of applied nucleotides and purinoceptor antagonists gave novel evidence implicating extracellular nucleotides as regulators of the gravity response in these fern spores. CONCLUSIONS: In addition to revealing general features of the transcriptome of germinating spores, the results highlight a number of calcium-responsive and light-receptive transcripts. Pharmacologic assays indicate endomembrane Ca(2+)-ATPases and extracellular nucleotides may play regulatory roles in the gravity response of Ceratopteris spores.


Subject(s)
Apyrase/metabolism , Calcium-Transporting ATPases/metabolism , Calcium/metabolism , Gravitation , Pteridaceae/physiology , Sequence Analysis, RNA/methods , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Apyrase/genetics , Calcium-Transporting ATPases/antagonists & inhibitors , Calcium-Transporting ATPases/chemistry , Cell Polarity/drug effects , Databases, Genetic , Enzyme Inhibitors/pharmacology , Extracellular Space/drug effects , Extracellular Space/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Molecular Sequence Data , Photoreceptors, Plant/metabolism , Pteridaceae/cytology , Pteridaceae/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Spores/drug effects
3.
Nanotechnology ; 22(35): 355502, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21828892

ABSTRACT

This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 µA mM(-1) cm(-2)), linear range (0.0037-12 mM), detection limit (3.7 µM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H(2)O(2) response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.


Subject(s)
Biosensing Techniques/instrumentation , Enzymes, Immobilized/chemical synthesis , Glucose Oxidase/chemistry , Glucose/analysis , Nanotubes, Carbon/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/instrumentation , Electrodes , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Ferricyanides/chemistry , Glucose/metabolism , Glucose Oxidase/metabolism , Hydrogen Peroxide/chemistry , Linear Models , Organosilicon Compounds/chemistry , Platinum/chemistry , Reproducibility of Results , Sensitivity and Specificity , Silanes/chemistry
4.
Planta ; 233(5): 911-20, 2011 May.
Article in English | MEDLINE | ID: mdl-21234599

ABSTRACT

In single-celled spores of the fern Ceratopteris richardii, gravity directs polarity of development and induces a directional, trans-cellular calcium (Ca(2+)) current. To clarify how gravity polarizes this electrophysiological process, we measured the kinetics of the cellular response to changes in the gravity vector, which we initially estimated using the self-referencing calcium microsensor. In order to generate more precise and detailed data, we developed a silicon microfabricated sensor array which facilitated a lab-on-a-chip approach to simultaneously measure calcium currents from multiple cells in real time. These experiments revealed that the direction of the gravity-dependent polar calcium current is reversed in less than 25 s when the cells are inverted, and that changes in the magnitude of the calcium current parallel rapidly changing g-forces during parabolic flight on the NASA C-9 aircraft. The data also revealed a hysteresis in the response of cells in the transition from 2g to micro-g in comparison to cells in the micro-g to 2-g transition, a result consistent with a role for mechanosensitive ion channels in the gravity response. The calcium current is suppressed by either nifedipine (calcium-channel blocker) or eosin yellow (plasma membrane calcium pump inhibitor). Nifedipine disrupts gravity-directed cell polarity, but not spore germination. These results indicate that gravity perception in single plant cells may be mediated by mechanosensitive calcium channels, an idea consistent with some previously proposed models of plant gravity perception.


Subject(s)
Calcium Signaling/physiology , Gravitropism/physiology , Pteridaceae/metabolism , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Polarity/drug effects , Cell Polarity/physiology , Eosine Yellowish-(YS)/pharmacology , Germination/drug effects , Germination/physiology , Hypogravity , Nifedipine/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Pteridaceae/drug effects , Pteridaceae/growth & development , Space Flight
5.
Biomed Microdevices ; 11(6): 1239-50, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19653101

ABSTRACT

Advancements in microfabrication technology have lead to the development of planar micro-pore electroporation technology. This technology has been shown to provide greater control in single cell manipulation, and electroporation which is independent from cell size. In this work we report direct and spatially resolved characterization of electric currents within a planar micropore electroporation biochip to better understand this phenomenon at the cellular level. This work was performed using a two-dimensional (2-D) vibrating probe (VP). Analysis of the spatial patterns of current density yielded a 4th order polynomial profile in the planes parallel to the biochip's surface and a three parameter hyperbolic decay profile in the planes perpendicular to the chip surface. A finite element model was developed which correlates with actual measurements on the micropore. Preliminary VP current density measurements of electroporated HepG2 cells revealed a significantly high current density minutes after electroporation even with non-electroporative pulses. These results indicate that cells take a considerable amount of time for complete electrophysiological recovery and indicate the use of the VP as a cell viability indicator for optimized electroporation.


Subject(s)
Electroporation/methods , Cell Survival , Electrodes , Finite Element Analysis , Hep G2 Cells , Humans , Microfluidic Analytical Techniques , Vibration
6.
ACS Nano ; 3(1): 37-44, 2009 Jan 27.
Article in English | MEDLINE | ID: mdl-19206246

ABSTRACT

Networks of single-walled carbon nanotubes (SWCNTs) decorated with Au-coated Pd (Au/Pd) nanocubes are employed as electrochemical biosensors that exhibit excellent sensitivity (2.6 mA mM(-1) cm(-2)) and a low estimated detection limit (2.3 nM) at a signal-to-noise ratio of 3 (S/N = 3) in the amperometric sensing of hydrogen peroxide. Biofunctionalization of the Au/Pd nanocube-SWCNT biosensor is demonstrated with the selective immobilization of fluorescently labeled streptavidin on the nanocube surfaces via thiol linking. Similarly, glucose oxidase (GOx) is linked to the surface of the nanocubes for amperometric glucose sensing. The exhibited glucose detection limit of 1.3 muM (S/N = 3) and linear range spanning from 10 muM to 50 mM substantially surpass similar CNT-based biosensors. These results, combined with the structure's compatibility with a wide range of biofunctionalization procedures, would make the nanocube-SWCNT biosensor exceptionally useful for glucose detection in diabetic patients and well suited for a wide range of amperometric detection schemes for clinically important biomarkers.


Subject(s)
Biosensing Techniques/methods , Electrochemistry/methods , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Biomarkers/chemistry , Biotin/chemistry , Glucose/chemistry , Glucose Oxidase/chemistry , Gold/chemistry , Hydrogen Peroxide/chemistry , Metal Nanoparticles/chemistry , Models, Chemical , Nanoparticles/chemistry , Palladium/chemistry , Streptavidin/chemistry
7.
J Biol Eng ; 2: 17, 2008 Dec 30.
Article in English | MEDLINE | ID: mdl-19116024

ABSTRACT

BACKGROUND: Immediately after damage to the nervous system, a cascade of physical, physiological, and anatomical events lead to the collapse of neuronal function and often death. This progression of injury processes is called "secondary injury." In the spinal cord and brain, this loss in function and anatomy is largely irreversible, except at the earliest stages. We investigated the most ignored and earliest component of secondary injury. Large bioelectric currents immediately enter damaged cells and tissues of guinea pig spinal cords. The driving force behind these currents is the potential difference of adjacent intact cell membranes. For perhaps days, it is the biophysical events caused by trauma that predominate in the early biology of neurotrauma. RESULTS: An enormous (

8.
Expert Rev Proteomics ; 4(4): 553-63, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17705712

ABSTRACT

This paper presents a review of microtechnologies relevant to applications in cellular physiology, including biochips, electrochemical sensors and optrodic sensing techniques. Microelectrodes have been the main tools for measuring cellular electrophysiology, oxygen, nitric oxide, neurotransmitters, pH and various ions. Optical fiber sensing methods, such as indicator-based optrodes, with fluorescence lifetime measurement, are now emerging as viable alternatives to electroanalytical chemistry. These new optrode techniques are possible because of recent advances in the optoelectronics industry and are comparably easier to miniaturize, have faster response times, do not consume the analyte and have lower operational costs. This review serves as a summary and predicts future trends for both electrochemical and optical luminescence lifetime sensing as components in lab-on-a-chip devices for physiological sensing.


Subject(s)
Biosensing Techniques , Cell Membrane/metabolism , Electrodes , Fluorescence , Hydrogen-Ion Concentration , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...