Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(23): 12679-87, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26018206

ABSTRACT

Gravure printing is an attractive technique for patterning high-resolution features (<5 µm) at high speeds (>1 m/s), but its electronic applications have largely been limited to depositing nanoparticle inks and polymer solutions on plastic. Here, we extend the scope of gravure to a new class of materials and on to new substrates by developing viscous sol-gel precursors for printing fine lines and films of leading transparent conducting oxides (TCOs) on flexible glass. We explore two strategies for controlling sol-gel rheology: tuning the precursor concentration and tuning the content of viscous stabilizing agents. The sol-gel chemistries studied yield printable inks with viscosities of 20-160 cP. The morphology of printed lines of antimony-doped tin oxide (ATO) and tin-doped indium oxide (ITO) is studied as a function of ink formulation for lines as narrow as 35 µm, showing that concentrated inks form thicker lines with smoother edge morphologies. The electrical and optical properties of printed TCOs are characterized as a function of ink formulation and printed film thickness. XRD studies were also performed to understand the dependence of electrical performance on ink composition. Printed ITO lines and films achieve sheet resistance (Rs) as low as 200 and 100 Ω/□, respectively (ρ≈2×10(-3) Ω-cm) for single layers. Similarly, ATO lines and films have Rs as low as 700 and 400 Ω/□ with ρ≈7×10(-3) Ω-cm. High visible range transparency is observed for ITO (86-88%) and ATO (86-89%). Finally, the influence of moderate bending stress on ATO films is investigated, showing the potential for this work to scale to roll-to-roll (R2R) systems.

2.
Nano Lett ; 15(5): 3261-6, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25830693

ABSTRACT

We report the first demonstration of inkjet-printed 4-terminal microelectromechanical (MEM) relays and inverters with hyper-abrupt switching that exhibit excellent electrical and mechanical characteristics. This first implementation of a printed 4-terminal device is critically important, since it allows for the realization of full complementary logic functions. The floated fourth terminal (body electrode), which allows the gate switching voltage to be adjusted, is bonded to movable channel beams via a printed epoxy layer in a planar structure, which can move downward together via the electrostatic force between the gate electrodes and body such that the channel can also actuate downward and touch the drain electrode. Because the body, channel, and drain electrodes are completely electrically separated, no detectable leakage or electrical interference between the electrodes is observed. The printed MEM relay exhibited an on-state resistance of only 3.48 Ω, immeasurable off-state leakage, subthreshold swing <1 mV/dec, and a stable operation over 10(4) cycles with a switching delay of 47 µs, and the relay inverter exhibits abrupt transitions between on/off states. The operation of the printed 4-terminal MEM relay was also verified against the results of a 3-dimensional (3D) finite element simulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...