Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(1): 774-781, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38156904

ABSTRACT

SOS1 and SOS2 are guanine nucleotide exchange factors that mediate RTK-stimulated RAS activation. Selective SOS1:KRAS PPI inhibitors are currently under clinical investigation, whereas there are no reports to date of SOS2:KRAS PPI inhibitors. SOS2 activity is implicated in MAPK rebound when divergent SOS1 mutant cell lines are treated with the SOS1 inhibitor BI-3406; therefore, SOS2:KRAS inhibitors are of therapeutic interest. In this report, we detail a fragment-based screening strategy to identify X-ray cocrystal structures of five diverse fragment hits bound to SOS2.


Subject(s)
Furans , Guanine Nucleotide Exchange Factors , Proto-Oncogene Proteins p21(ras) , Quinazolines , X-Rays , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Cell Line , SOS1 Protein/metabolism
2.
J Biol Chem ; 293(29): 11564-11573, 2018 07 20.
Article in English | MEDLINE | ID: mdl-29875159

ABSTRACT

Ulvan is a complex sulfated polysaccharide present in the cell wall of green algae of the genus Ulva (Chlorophyta). The first ulvan-degrading polysaccharide lyases were identified several years ago, and more were discovered through genome sequencing of marine bacteria. Ulvan lyases are now grouped in three polysaccharide lyase (PL) families in the CAZy database, PL24, PL25, and PL28. The recently determined structures of the representative lyases from families PL24 and PL25 show that they adopt a seven-bladed ß-propeller fold and utilize the His/Tyr catalytic mechanism. No structural information is yet available for PL28 ulvan lyases. NLR48 from Nonlabens ulvanivorans belongs to PL28 together with its close paralog, NLR42. Biochemical studies of NLR42 have revealed that it can cleave ulvan next to both uronic acid epimers. We report the crystal structure of ulvan lyase NLR48 at 1.9-Å resolution. It has a ß-jelly roll fold with an extended, deep, and positively charged substrate-binding cleft. Putative active-site residues were identified from the sequence conservation pattern, and their role was confirmed by site-directed mutagenesis. The structure of an inactive K162M mutant with a tetrasaccharide substrate showed the substrate occupying the "-" subsites. Comparison with lyases from other PL families with ß-jelly roll folds supported assignment of the active site and explained its ability to degrade ulvan next to either epimer of uronic acid. NLR48 contains the His/Tyr catalytic machinery with Lys162 and Tyr281 playing the catalytic base/acid roles.


Subject(s)
Flavobacteriaceae/enzymology , Polysaccharide-Lyases/metabolism , Catalytic Domain , Crystallography, X-Ray , Flavobacteriaceae/chemistry , Flavobacteriaceae/metabolism , Models, Molecular , Oligosaccharides/metabolism , Polysaccharide-Lyases/chemistry , Protein Conformation , Substrate Specificity
3.
J Biol Chem ; 293(11): 4026-4036, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29382716

ABSTRACT

Ulvan is a major cell wall component of green algae of the genus Ulva, and some marine bacteria encode enzymes that can degrade this polysaccharide. The first ulvan-degrading lyases have been recently characterized, and several putative ulvan lyases have been recombinantly expressed, confirmed as ulvan lyases, and partially characterized. Two families of ulvan-degrading lyases, PL24 and PL25, have recently been established. The PL24 lyase LOR_107 from the bacterial Alteromonadales sp. strain LOR degrades ulvan endolytically, cleaving the bond at the C4 of a glucuronic acid. However, the mechanism and LOR_107 structural features involved are unknown. We present here the crystal structure of LOR_107, representing the first PL24 family structure. We found that LOR_107 adopts a seven-bladed ß-propeller fold with a deep canyon on one side of the protein. Comparative sequence analysis revealed a cluster of conserved residues within this canyon, and site-directed mutagenesis disclosed several residues essential for catalysis. We also found that LOR_107 uses the His/Tyr catalytic mechanism, common to several PL families. We captured a tetrasaccharide substrate in the structures of two inactive mutants, which indicated a two-step binding event, with the first substrate interaction near the top of the canyon coordinated by Arg320, followed by sliding of the substrate into the canyon toward the active-site residues. Surprisingly, the LOR_107 structure was very similar to that of the PL25 family PLSV_3936, despite only ∼14% sequence identity between the two enzymes. On the basis of our structural and mutational analyses, we propose a catalytic mechanism for LOR_107 that differs from the typical His/Tyr mechanism.


Subject(s)
Alteromonadaceae/enzymology , Mutation , Polysaccharide-Lyases/chemistry , Polysaccharide-Lyases/metabolism , Polysaccharides/metabolism , Catalysis , Catalytic Domain , Crystallography, X-Ray , Models, Molecular , Mutagenesis, Site-Directed , Polysaccharide-Lyases/genetics , Protein Conformation , Structure-Activity Relationship , Substrate Specificity
4.
ACS Chem Biol ; 12(5): 1269-1280, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28290654

ABSTRACT

Ulvan is a complex sulfated polysaccharide biosynthesized by green seaweed and contains predominantly rhamnose, xylose, and uronic acid sugars. Ulvan-degrading enzymes have only recently been identified and added to the CAZy ( www.cazy.org ) database as family PL24, but neither their structure nor catalytic mechanism(s) are yet known. Several homologous, new ulvan lyases, have been discovered in Pseudoalteromonas sp. strain PLSV, Alteromonas LOR, and Nonlabens ulvanivorans, defining a new family PL25, with the lyase encoded by the gene PLSV_3936 being one of them. This enzyme cleaves the glycosidic bond between 3-sulfated rhamnose (R3S) and glucuronic acid (GlcA) or iduronic acid (IdoA) via a ß-elimination mechanism. We report the crystal structure of PLSV_3936 and its complex with a tetrasaccharide substrate. PLSV_3936 folds into a seven-bladed ß-propeller, with each blade consisting of four antiparallel ß-strands. Sequence conservation analysis identified a highly conserved region lining at one end of a deep crevice on the protein surface. The putative active site was identified by mutagenesis and activity measurements. Crystal structure of the enzyme with a bound tetrasaccharide substrate confirmed the identity of base and acid residues and allowed determination of the catalytic mechanism and also the identification of residues neutralizing the uronic acid carboxylic group. The PLSV_3936 structure provides an example of a convergent evolution among polysaccharide lyases toward a common active site architecture embedded in distinct folds.


Subject(s)
Catalytic Domain , Evolution, Molecular , Polysaccharide-Lyases/chemistry , Biocatalysis , Catalytic Domain/genetics , Conserved Sequence , Crystallography, X-Ray , Molecular Structure , Polysaccharides , Pseudoalteromonas/enzymology
5.
Glycobiology ; 27(2): 176-187, 2017 01.
Article in English | MEDLINE | ID: mdl-27621378

ABSTRACT

Glycosaminoglycans (GAGs) are linear polysaccharides comprised of disaccharide repeat units, a hexuronic acid, glucuronic acid or iduronic acid, linked to a hexosamine, N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine. GAGs undergo further modification such as epimerization and sulfation. These polysaccharides are abundant in the extracellular matrix and connective tissues. GAGs function in stabilization of the fibrillar extracellular matrix, control of hydration, regulation of tissue, organism development by controlling cell cycle, cell behavior and differentiation. Niche adapted bacteria express enzymes called polysaccharide lyases (PL), which degrade GAGs for their nutrient content. PL have been classified into 24 sequence-related families. Comparison of 3D structures of the prototypic members of these families allowed identification of distant evolutionary relationships between lyases that were unrecognized at the sequence level, and identified occurrences of convergent evolution. We have characterized structurally and enzymatically heparinase III from Bacteroides thetaiotaomicron (BtHepIII; gene BT4657), which is classified within the PL12 family. BtHepIII is a 72.5 kDa protein. We present the X-ray structures of two crystal forms of BtHepIII at resolution 1.8 and 2.4 Å. BtHepIII contains two domains, the N-terminal α-helical domain forming a toroid and the C-terminal ß-sheet domain. Comparison with recently determined structures of two other heparinases from the same PL12 family allowed us to identify structural flexibility in the arrangement of the domains indicating open-close movement. Based on comparison with other GAG lyases, we identified Tyr301 as the main catalytic residue and confirmed this by site-directed mutagenesis. We have characterized substrate preference of BtHepIII toward sulfate-poor heparan sulfate substrate.


Subject(s)
Bacteroides thetaiotaomicron/enzymology , Polysaccharide-Lyases/chemistry , Protein Conformation , Binding Sites , Catalysis , Crystallography, X-Ray , Glycosaminoglycans/metabolism , Heparitin Sulfate/chemistry , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Polysaccharide-Lyases/genetics , Protein Binding , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...